Notes
- Four Scales of Modeling
- Practical User's Guide for ISAAC
- A Working Person's Guide to Molecular Dynamics
- A Practical Demonstration of Running a First LAMMPS Simulation on ISAAC
- Error Analysis (Block Averaging)
- Interdisciplinary Graduate Minor in Computational Science
- Visualization
- Simulation of Metals Using the Embedded Atom Method (EAM) Potential
- Notes
- Example Files
- Murray S. Daw and M. I. Baskes, "Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals", Phys. Rev. Lett. 50(17) (1983) pp. 1285-1288. http://dx.doi.org/10.1103/PhysRevLett.50.1285
- Murray S. Daw and M. I. Baskes, "Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals", Phys. Rev. B 29(12) (1984) pp. 6443-6453. http://dx.doi.org/10.1103/PhysRevB.29.6443
- M. I. Mendelev , S. Han , D. J. Srolovitz , G. J. Ackland , D. Y. Sun & M. Asta, "Development of new interatomic potentials appropriate for crystalline and liquid iron", Philosophical Magazine 83(35) (2003) pp. 3977-3994. http://dx.doi.org/10.1080/14786430310001613264
- Simulation of Molecules (Intramolecular Degrees of Freedom)
- Multi-Step Time Integrators: r-ReSPA
- Notes
- Tuckerman, M.E., Berne, B. J., Martyna, G. J., "Reversible multiple time scale molecular dynamics", J. Chem. Phys. 97(3) 1992 p. 1990-2001. http://dx.doi.org/10.1063/1.463137
- Martyna, G. J., Tuckerman, M. E., Tobias, D. J., Klein, M. L., "Explicit reversible integrators for extended system dynamics", Mol. Phys. 87(5) 1996 p. 1117-1157. http://dx.doi.org/10.1080/00268979600100761
- Example Files
- Thermostats & Barostats
- Keffer, D.J., Baig, C., Adhangale, P., Edwards, B.J., "A Generalized Hamiltonian-Based Algorithm for Rigorous Equilibrium Molecular Dynamics Simulation in the Canonical Ensemble", J. Non-Newtonian Fluid Mech. 152(1-3) 2008 pp. 129-139. http://dx.doi.org/10.1016/j.jnnfm.2007.10.004
- Keffer, D.J., Baig, C., Adhangale, P., Edwards, B.J., "A Generalized Hamiltonian-Based Algorithm for Rigorous Equilibrium Molecular Dynamics Simulation in the Isobaric-Isothermal Ensemble", Mol. Sim. 32(5) 2006 p. 345-356. http://dx.doi.org/10.1080/08927020600684345
- Example Files
- Rigid Dynamics
- Notes
- Example Files
- Equations of Motion for Rigid Bodies:
T. F. Miller, M. Eleftheriou, P. Pattnaik, A. Ndirango, D. Newns, and G. J. Martyna,
“Symplectic quaternion scheme for biophysical molecular dynamics”,
J. Chem. Phys.
116,
2002,
p. 8649,
doi: 10.1063/1.1473654.
- Thermodynamic Properties
- Notes
- Wang, Q., Keffer, D.J., Petrovan, S., Thomas, J.B.,
“Molecular Dynamics Simulation of Polyethylene Terephthalate Oligomers”,
J. Phys. Chem. B. 114(2), 2010, pp. 786-795,
doi: 10.1021/jp909762j.
- McNutt, N.W., Wang, Q., Keffer, D.J., Rios, O.,
“Entropy-driven Structure and Dynamics in Carbon Nanocrystallites”,
J. Nanoparticle Res. 16 (4), 2014, article # 2365,
doi: 10.1007/s11051-014-2365-7.
- Diffusion
- Notes
- Example Files
- A Practical Introduction to Self-Diffusion Coefficients
- Frame of Reference for Diffusion:
Keffer, D.J., Gao, C.Y., Edwards, B.J.,
“On the Relationship between Fickian Diffusivities at the Continuum and Molecular Levels”,
J. Phys. Chem B.
109
2005
pp. 5279-5288,
doi: 10.1021/jp0446635.
- Checking the MSD vs Time Exponent:
Wang, Q., Keffer, D.J., Petrovan, S., Thomas, J.B.,
“Molecular Dynamics Simulation of Polyethylene Terephthalate Oligomers”,
J. Phys. Chem. B. 114(2), 2010, pp. 786-795,
doi: 10.1021/jp909762j.
- Temperature Dependence of Diffusion Coefficients
& Examination of RMS Displacements:
Xiong, R., Odbadrakh, K., Michalkova, A., Luna, J.P., Petrova, T., Keffer, D.J., Nicholson, D.M., Fuentes-Cabrera, M.A., Lewis, J.P., Leszczynski, J.,
“Evaluation of Functionalized Isoreticular Metal Organic Frameworks (IRMOFs) as Smart Nanoporous Preconcentrators of RDX”,
Sensor Actuat B-Chem
148
2010
pp. 459-468,
doi: 10.1016/j.snb.2010.05.064.
- Composition Dependence of Diffusion Coefficients:
Keffer, D.J., Adhangale, P.,
“The composition dependence of self and transport diffusivities from molecular dynamics simulations”,
Chem. Eng. J.
100 (1-3)
2004
pp. 51-69,
doi: 10.1016/j.cej.2003.11.028.
- Statistical Reliability of Diffusion Coefficients:
Keffer, D.J., Edwards, B.J., Adhangale, P.,
“Determination of statistically reliable transport diffusivities from molecular dynamics simulation”,
J. Non-Newtonian Fluid Mech.
120 (1-3)
2004
pp. 41-53,
doi: 10.1016/j.jnnfm.2004.01.014.
- Single File Motion:
Keffer, H.T., McCormick, A.V., D., Davis,
“Unidirectional and single-file diffusion in AlPO4-5: molecular dynamics investigations”,
Mol. Phys.
87(2)
1996
pp. 367-387,
doi: 10.1080/00268979600100241.
- Sub-Diffusive Motion in an Intermediate Time Scale:
Calvo-Muñoz, E.M., Esai Selvan, M., Xiong, R., Ojha, M., Keffer, D.J., Nicholson, D.M., Egami, T.,
“Applications of a General Random Walk Theory for Confined Diffusion”,
Phys. Rev. E
83(1)
2011
article # 011120,
doi: 10.1103/PhysRevE.83.011120.
- Non-Equilibrium Measurements of Diffusivity:
Grant S. Heffelfinger and Frank van Swol,
“Diffusion in Lennard-Jones fluids using dual control volume grand canonical molecular dynamics simulation (DCV-GCMD)”,
J. Chem. Phys.
100(10)
1994
p. 7548-7552,
doi: 10.1063/1.466849.
- Viscosity
- Notes
- (links to references moved inside notes)
- Thermal Conductivity
- Structural Properties
- Two Phase Simulations
- Restarting Simulations
- Evaluating the Coulombic Potential
- Reactive Molecular Dynamics
- Notes
- guest lecture by Nick McNutt
- Evaluating the Chemical Potential
- Notes (forthcoming)
- guest lecture by Marshall McDonnell
|