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1.  Creating an Orthogonal Basis Set 
 
1.A. Introduction to Basis Sets 

 
A basis set is just a set of linearly independent vectors that spans a given space or subspace of interest to us.  For 

example, in three-dimensional space in cartesian coordinates, a basis set for all of 3-D space is 
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which can also be written as 
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This set of vectors spans 3-D space.  By spanning we mean that any point in 3-D space can be described as a linear 
combination of our basis set vectors.   However, this basis set is certainly not unique.  Other basis sets that span all of 
3-D space are 
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because these vectors are all independent.  The rank of these basis matrices is 3.   
 Examples of sets of vectors which are not basis sets are as follows: 
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The first example is not a basis set because the first two columns are not linearly independent.  The rank of this matrix 
is 2.  The second example is not a basis set because this set of vectors does not span all of 3-D space.  The rank of this 
matrix is 2.  The third example is not a basis set even though it spans all of 3-D space.  It an additional dependent 
vector.  A basis set has the minimum number of basis sets necessary to span the space. 
 

Sometimes we are not interested in all of 3-D space.  Perhaps we are only interested in the y=x plane through 
3-D space.  Then we have a basis set as follows 
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The rank is 2, because we are in a 2-D subspace of 3-D space. 
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In order to get started talking about orthogonal or orthonormal (meaning both orthogonal and normalized to unity) 
basis sets, we should start with one such basis set that we already know.  As shown above, a basis set need not be 
orthogonal, normalized, or orthonormal.  However, as we shall see, orthogonal and orthonormal basis sets have many 
pleasing properties.  An orthonormal basis set for three-dimensional space in cartesian coordinates is  
which can also be written as 
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To test this or any other basis set for orthonormality the following conditions must be satisfied: 
 
 ijji bb δ=⋅           (1.3) 
 
In words, (1) the dot product of any pair of distinct basis vectors is zero and (2) the dot product of a basis vector with 
itself is unity.  If only the first condition is met the basis set is orthogonal.  If both conditions are met, the basis set is 
orthonormal.  If neither condition is met, the basis set is neither orthogonal nor normalized. 
 
1.B.  Use of a basis set 
 
 All points in space can be described as a linear combination of a sample-spanning basis set.  For example, the 
point [ ]T35.02a −=  in three-dimensional Cartesian space can be written as  
 
 aBb3b5.0b2a 321 =⋅−⋅+⋅=        (1.4) 

 
However frequently, we don’t want to use this simple basis set for three-dimensional Cartesian space.   
 
example: 
 Frequently when you obtain x-ray crystallographic data of the atomic coordinates of a crystalline material 
you are given the cell symmetry, the axes lengths, and the atomic coordinates in the (non-cartesian) reference frame of 
the crystal (defined by its axes and a (0,0,0) origin. 
 Consider an atom in a crystal cell with axes defined by  
a = 14Å, b=14Å, c=8Å.  θAB = 120°, θAC = 90°, θBC = 90°, and scaled (from 0.0 to 1.0) atomic position (in the crystal 
cell frame of reference) (0.25,0.5,0.25).  Find the atomic position in cartesian coordinates. 
 
 Here we have a vector [ ]T25.05.025.0x =  but it is not based on the ordinary 3D Cartesian space 
basis set of equation (1.1).  Rather, it is an expression a linear combination of the crystal cell axes.  Given the angles 
above and a little experience dealing with crystal cells, any crystal cell axes can be written as  (see Appendix) 
 

 
















 θ

θ
=

c00
0sinb0
0cosba

B AB

AB
)1(  

 
Is this basis set orthogonal or normalized?  Check it. 
 
 0cosabbb AB21 ≠θ=⋅   
 
so it is not orthogonal.   
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 1abb 2
11 ≠=⋅   

 
so it is not normalized.  Sometimes, the problem does not lend itself to an orthonormal basis set. 

Regardless, we can first transform the unit cell axes to standard cartesian coordinates, using elementary 
trigonometry and algebra.   
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See Appendix I for the derivation of the generalized method for obtaining this transformation matrix as well as for the 
calculation of this particular example.  We superscript this matrix because it is our starting point in the transformation.   
 The atomic position in the crystal cell frame of reference was  
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The expression of this vector in standard 3D Cartesian space is given by equation (1.4) 
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This provides one example of how transformation matrices work.  In this example, the fact that the basis set was not 
orthonormal didn’t matter.  In other transformations, particularly in rotational transformations, we see that it can be 
very useful. 
 
1.C.  Creating an orthonormal basis set 
 
 One process of creating an orthonormal basis set from some other set of sample-spanning basis vectors is 
called Gram-Schmidt Orthogonalization.  There are other methods:  modified Gram-Schmidt and Householder 
processes which are more amenable to computer applications.  However, this one is nice and simple.  We will stick to 
it. 

 In Gram-Schmidt Orthogonalization, we start with vectors )1(
3
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1 b,b,b  for a 3-D vector space.  The 

superscript (1), indicates our starting point.  These vector are not orthogonal.  We want to create an orthogonal basis 

set that spans the same 3D space or subspace, )2(
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and in general  
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These vectors are orthogonal.  They are not normalized.  If we want them normalized, then we have to normalize them 
ourselves by  
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where the magnitude is determined by  
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example: 
  
Create an orthogonal basis set from the basis vectors: 
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So that our new orthogonal basis set is  
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If we normalize these, we have 
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1.D.  Properties of an orthogonal matrix 

 
The most important property of an orthogonal basis set is that it’s inverse is the same as its transpose. 
 

1T BB −=            (1.12) 
 
This is a very nice feature because calculating the inverse is a pain in the ass but calculating the transpose is trivial.   
 The adjoint of a matrix is defined to be the complex conjugate of the transpose. 

 

( )*TBB~ =            (1.13) 
 

Since most of the time, we have real matrices, the complex conjugate of a matrix is the matrix itself and the 
adjoint is the transpose 

 

( ) T*T BBB~ ==   for real matrices       (1.14) 
 

In this case (a real orthogonal matrix), when 1T BBB~ −== , the matrix is called unitary.  
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2.  Transforming coordinates systems 
 

A point in space, P, is meaningful only if the relevant coordinate system is known.  For whatever, sometimes 
one coordinate system is preferable over another.  Therefore, we need to know how to change coordinate systems.   

An N-dimensional coordinate system, C(1), is defined by an origin, )1(o , and by N independent N-dimensional 

vectors (a basis set, B ).   
 The default three-dimensional cartesian coordinate system,  C(o), has a basis set: 
 

 
















=

100
010
001

B )o(
 

 
and an origin 
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α  is a vector expressed in the default three-dimensional cartesian coordinate system, C(o).  In general α  is related to 
any other arbitrary coordinate system as 
 

 )2()2()2()1()1()1( oxBoxB +=+=α  
 
This equation assumes that both origins are given with respect to C(o).  In the case where the coordinate system is C(o), 
then  
 

 )o()o()o()o( xoxB =+=α  
 
If we want to change from C(1) to C(2), where there is no reference to C(o), then the second origin, )2(o , is naturally 
expressed in the coordinates of the first coordinate system, C(1) . 
 In this case, we must first transform )2(o  to C(o), in order to use the formula given above.  This 
transformation is obtained the same way as any other point is transformed 
 

 )1()2()1()2( ooBo +=
′

 
 
so that our generalized equation for transformation becomes  
 

 )1()2()1()2()2()2()2()2()1()1()1( ooBxBoxBoxB ++=
′

+=+=α  
 
in the case where )2(o , is expressed in the coordinates of the first coordinate system, C(1) .  Let us look at some specific 
examples below. 
 
2.A.  Changing origin only (same basis set)  
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 If we have a point in space )1(x , with respect to a coordinate System C(1), with origin at B and basis set )1(x  

and we want to change the coordinate system to System C(2), which has the same basis set, B , but a different origin, 
)2(o , the transformation from C(1) to C(2) is accomplished by the following: 

 

 )2()2()2()1()1()1( oxBoxB +=+=α        (2.1a) 
 
So that the representation of the point in the new coordinate system is  
  

 [ ] [ ])2()1(1)2()1()2()1()1()1(1)2()2( ooBxooxBBx −+=−+=
−−

    (2.1b) 
 
Again, this assumes that the )2(o  is given according to the same coordinate system as )1(o .  If it is not, we must first 

transform )2(o . 
 
example 1: 
 The center of a mass of a nitrogen molecule is at a point (1,2,3) in the laboratory frame of reference, which 
has an origin of (0,0,0) and the basis vectors given by the 3x3 identity matrix, 3I .  In the center-of-mass frame of 
reference, the origin is at the center of mass, namely (1,2,3).  The center of mass coordinate system has the same basis 
vectors as the lab.  The nitrogen atoms are at points (1.06, -1.06, 0) (-1.06, 1.06, 0) with respect to the center of mass.  
Find the position of the atoms in the laboratory frame of reference.  In this case C(1) is the molecular frame of reference 
and C(2) is the lab frame.  Here the second origin is given with respect to the same coordinate system as the first origin, 
namely C(o) . 
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We can see the graphical interpretation of this transformation in Figure 1. 
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Figure 1. 

example 2. 
 Consider a two-dimensional coordinate system with an origin at )1(o =(1,1) in the laboratory frame, C(o)  and 

a basis set a 







=

20
02

B )1( .  Consider a second coordinate system with an origin at )2(o =(1,1) in C(1)  and the same 

basis set.  We want to express the point  )1(x =(2,2) in terms of  C(2) . In other words, find )2(x . 
 Since the second origin is given with respect to the first coordinate system, we need to account for it 
 

)1()2()1()2()2()2()2()2()1()1()1( ooBxBoxBoxB ++=
′

+=+=α  
 
Rearranging for )2(x , we have 
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Since the basis sets for  C(1) and C(2) are the same, we have  
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We can see the graphical interpretation of this transformation in Figure 2.  In Figure Two,  C(o) is shown for reference 
purposes only.  It was never used in the calculation. 
 
 

center of mass: (1,2,3) or (0,0,0)

x-y plane of N2 problem
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N2: (0,3,3) or (1,-1,0)

N1: (2,1,3) or (-1,1,0)
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Figure 2. 

 
2.B.  Changing basis set only (same origin) 
 

 If we have a point in space )1(x , with respect to a coordinate System C(1), with origin at o and basis set )1(B  

and we want to change the coordinate system to System C(2), which has a different basis set, )2(B , but the same origin, 

o , the transformation from C(1) to C(2) is accomplished by the following: 
 

2.B.1.  express )1(x  as a linear combination of the column vectors (basis set) in )1(B  
 

 )1()1( xB=α           (2.2) 
 
or equivalently in scalar form: 
 
 )1(

n
)1(

n
)1(

1n
)1(

1n
)1(

2
)1(

2
)1(

1
)1(

1 bxbx...bxbx ++++=α −−     (2.3) 
 
Our vector of unknowns, α , is just a representation of the point )1(x  with respect to the standard n-dimensional 
cartesian basis set, i.e. 
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2.B.2.  express 
)2(x  as a linear combination of the column vectors (basis set) in )2(B  

 

 )2()2( xB=α           (2.4) 

point: (5,5) or (2,2) or (1,1)
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1                       2                      3        
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equate α  in equation (2.4) and (2.3) 
 

 )2()2()1()1( xBxB ==α          (2.5) 
 

Solve for 
)2(x  

 

 )1()1()1(1)2()2( xMxBBx ==
−

 
 
We can see the physical meaning of the  M change-of-basis matrix if we attempt to express one basis set as a linear 

combination of the other basis set.  Express each column vector of )1(B  as a linear combination of the column vectors 

(basis set) in )2(B  
 
 )2(

nn,i
)2(

1n1n,i
)2(

22,i
)2(

11,i
)1(

i bmbm...bmb,mb ++++= −−  for i = 1 to N (2.5) 
 
or in matrix notation 
 

 i
)2()1(

i mBb =           (2.6) 
 
We can obtain our vector of unknowns, im  
 

 )1(
i

1)2(
i bBm

−
=          (2.7) 

 
We have N of these equations which we can write as 
 

 MBB )2()1( =           (2.8) 
 
or as 
 

 )1(1)2( BBM
−

=          (2.9) 
 
The  M change-of-basis matrix is just a way of expressing one basis set as a linear combination of another basis set. 
 
Before we look at an example we should see that the reverse transformation can also be acccomplished by 
 

 )2()2(1)1()1( xBBx
−

=  
 
Now, in equation (2.9) we have a definition for the transformation matrix M  for a change of basis from 12.  If we 

take the inverse  of M , we find that  
 

( ) )2(1)1(
1

)1(1)2(1 BBBBM
−−−− ==  
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so that the reverse transformation, from 2  1,  can be carried out with the inverse transformation matrix. 
  

 )2(1)2()2(1)1()1( xMxBBx −−
==  

 
example 1: 
 
We have a vector with the value x =(1,0,1) in a coordinate system with basis vectors (1,0,0), (0,1,0), and (0,1,1).  
Express this vector in a coordinate system with basis vectors (2,0,0), (2,2,0), and (0,0,2). 
  

 
















=

100
110
001

B )1( ,   
















=

200
020
022

B )2( ,  















 −
=

−

5.000
05.00
05.05.0

B
1)2(  

 
 

 















 −−
=































 −
==

−

5.000
5.05.00
5.05.05.0

 
100
110
001

5.000
05.00
05.05.0

BBM )1(1)2(    

        

 
















=































 −−
===

−

5.0
5.0

0

1
0
1

5.000
5.05.00
5.05.05.0

xMxBBx )1()1()1(1)2()2(  

 
 Now change back: 
 

 
















−=−

200
220

022
M 1  

 

 
















=
































−=== −−

1
0
1

5.0
5.0

0

200
220

022
xMxBBx )2(1)2()2(1)1()1(  

 
 
example 2: 
 Consider a two-dimensional coordinate system with an origin at )1(o  in the laboratory frame, C(o)  and a basis 

set a 







=

20
02

B )1( .  Consider a second coordinate system with an origin at )1()2( oo =  in C(1)  and the basis set 









=

10
11

B )2( .  We want to express the point  )1(x =(1,1) in terms of  C(2) . In other words, find )2(x . 

)1()1()1(1)2()2( xMxBBx ==
−
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







=















 −
=















 −
=

2
0

1
1

20
22

x
20
02

10
11

x )1()2(  

 
We can see the graphical interpretation of this transformation in Figure 3.  In Figure 3,  C(o) is shown for reference 
purposes only.  It was never used in the calculation. 
 

 
Figure 3. 

 
2.C.  Changing basis set and origin simultaneously 
 
 If we have a point in space )1(x , with respect to a coordinate System C(1), with origin at )1(o and basis set 

)1(B  and we want to change the coordinate system to System C(2), which has a different basis set, )2(B  and a different 

origin, )2(o , the transformation from C(1) to C(2) is accomplished by the following: 
 

 )2()2()2()1()1()1( oxBoxB +=+=α        (2.10) 
 

 [ ])2()1()1()1(1)2()2( ooxBBx −+=
−

       (2.11) 
 
 
Once again, this assumes that the )2(o  is given according to the same coordinate system as )1(o .  If it is not, (if )2(o  is 

given in terms of  C(1) ) we must first transform )2(o . 
 

 )1()2()1()2()2()2()2()2()1()1()1( ooBxBoxBoxB ++=
′

+=+=α  

[ ])2()1()1()1(1)2()1()2()1()1()1()1(1)2()2( oBxBBooBoxBBx −=



 −−+=

−−
 

 

point: (2,2) or (1,1) or (0,2)

o(o)
1           2          3           4         5          6           7

1

2

3

4

5

6

7

x

y

o(1)

1                       2                      3        

1

2

3

x

y

o(2)

1           2          3           4         5          6           7

1

2

3

4

5

x

y
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example 1: 
 Consider a two-dimensional coordinate system with an origin at )1,1(o )1( =  in the laboratory frame, C(o)  

and a basis set a 







=

20
02

B )1( .  Consider a second coordinate system with an origin at )2,2(o )2( =  in C(1)  and 

the basis set 







=

10
11

B )2( .  We want to express the point  )1(x =(1,1) in terms of  C(2) . In other words, find )2(x . 

 
Since )2(o  is given in terms of C(1), we must take that into account.  
 

[ ])2()1()1()1(1)2()1()2()1()1()1()1(1)2()2( oBxBBooBoxBBx −=



 −−+=

−−
 

 

[ ] 







−

=







−
−








 −
=

















−























 −
=−=

−

2
0

1
1

20
22

2
2

1
1

20
02

10
11

oxBBx )2()1()1(1)2()2(
 

 
We can see the graphical interpretation of this transformation in Figure 4.  In Figure 4,  C(o) is shown for reference 
purposes only.  It was never used in the calculation. 
 

 
Figure 4. 

 
 
example 2: 
 Consider example 1 again, but this time, assume that )2(o  is given in terms of the same coordinate system as 

)1(o , namely C(0).  In this case,   
 

[ ])2()1()1()1(1)2()2( ooxBBx −+=
−

 
 

o(o)
1           2          3           4         5          6           7

1

2

3

4

5

6

7

x

y

o(1)
1                       2                      3        

1

2

3

x

y

o(2)

1           2          3           4                              

point: (3,3) or (1,1) or (0,-2)

1

2

3

4

-1

-2

-3         -2        -1
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







=















 −
=

















−








+























 −
=

1
0

1
1

10
11

2
2

1
1

1
1

20
02

10
11

x )2(
 

 
We can see the graphical interpretation of this transformation in Figure 5.  In Figure 5,  C(o) is shown for reference 
purposes only.  It was never used in the calculation. 
 

 
Figure 5. 

 
example 3: 
 Frequently when you obtain x-ray crystallographic data of the atomic coordinates of a crystalline material 
you are given the cell symmetry, the axes lengths, and the atomic coordinates in the (non-cartesian) reference frame of 
the crystal (defined by its axes and a (0,0,0) origin. 
 Consider an atom in a crystal cell with axes defined by  
a = 14Å, b=14Å, c=8Å.  θAB = 120°, θAC = 90°, θBC = 90°, and scaled (from 0.0 to 1.0) atomic position (in the crystal 
cell frame of reference) (0.25,0.5,0.25).  Find the position in cartesian coordinates with an origin at the center of the 
unit cell. 
 We did this already but now we are going to do it again, within the general formalism of transformations.  We 
can first transform the unit cell axes to standard cartesian coordinates, using elementary trigonometry and geometry. 
 

 
















 θ

θ
=

c00
0sinb0
0cosba

B AB

AB
)1( , 
















 =

100
010
001

B )2( , 
















 =

−

100
010
001

B
1)2(  

 

 
















=

25.0
5.0

25.0
x )1( , 
















=

0
0
0

o )1(
, ?o )2( =  , ?x )2( =  

 

o(o)
1           2          3           4         5          6           7

1

2

3

4

5

6

7

x

y

o(1)
1                       2                      3        

1

2

3

x

y

o(2)

1           2          3           4         5          6           7 x

point: (3,3) or (1,1) or (0,1)1

2

3

4

5

y

-1

-2

-3         -2        -1
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In order to obtain )2(o , the origin of our final reference frame, we can realize that the center of the cell is easiest to 

find in the crystal cell coordinates, where is it (0.5, 0.5, 0.5).  This representation of )2(o  is with respect to C(1).  We 

can either use the formula given above for this case or we can transform )2(o  to the same coordinates system in which 
)1(o  is defined, using the same transformation given in equation (2.11) where the origin of this transformation is 

(0,0,0) 
 

 [ ]















θ

θ+
=−+=

−

c5.0
sinb5.0

cosb5.0a5.0
ooxBBx AB

AB
)1()1(

center
)1(1)2(

center  

 

 
















θ

θ+
==

c5.0
sinb5.0

cosb5.0a5.0
xo AB

AB

center
)2(

 

 
Now that we have the center, )2(o , in the same coordinate system as  )1(o , we can transform the point of interest 
using equation (2.11) 
 

 [ ])2()1()1()1(1)2()2( ooxBBx −+=
−

       (2.11) 
      

















−

−
=

















−

−
=
















θ

θ+
−
















θ

θ+
=

6
0

5.3

c25.0
0

a25.0

c5.0
sinb5.0

cosb5.0a5.0

c25.0
sinb5.0

cosb5.0a25.0
x AB

AB

AB

AB
)2(  
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3.  Rotational Transformations 
 
3.A.  General introduction to rotational matrices  
     
Any rotation in space can be accomplished with a rotational matrix.  The trouble is coming up with the form of the 
rotational matrix.  
 In 3-D space, rotations about the x, y, and z-axes are given by, respectively,  
 
 

















φφ−
φφ=

−

cossin0
sincos0

001
A

ROTX
       (3.1) 

 
 

















φφ−

φφ
=

−

cos0sin
010

sin0cos
A

ROTY
       (3.2) 

 
 
















φφ−
φφ

=
−

100
0cossin
0sincos

A
ROTZ

        (3.3) 

 
The problem is that frequently the rotation is more complicated than the a rotation about one of these axes.  

One methodical approach for arbitrary rotation in three dimensions is called the Euler angles.  I am going to give a 
quick and dirty summary of the Euler Angles.  For an elegant discussion and derivation of the rotational 
transformation matrix and the Euler Angles, refer to “Classical Mechanics” by Herbert Goldstein, Second Ed., 
Addison Wesley, Reading, Massachusetts, 1980, pp. 137-148, especially pp 146-147.   
 The Euler Angles arise from  

(1)  a rotation of φ about the z-axis, as given by equation (3.3) 
(2)  a rotation of θ about the newly rotated x-axis, as given by equation (3.2) 
(3)  a rotation of ψ about the newly rotated z-axis, as given by equation (3.3) 

 
 The net transformation is  
  
 )(A)(A)(AA

ROTZROTXROTZ
φθψ=

−−−
       (3.4) 

 
which explicitly is (where s=sin and c=cos) 
  

 

















−
+−−−

+−
=

θφθφθ
ψθψφθφψψφθφψ
ψθψφθφψψφθφψ

ccsss
cscccsscsccs
sssscscssccc

A     (3.5) 

 
 One important property of all rotational matrices is that they are orthogonal matrices.  The transpose is the 
inverse. 
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3.B.  Rotation of atoms about bonds in polyatomic molecules   
 

 
  

tetrapropyl ammonium cation 
 
example: 
 
Let’s say that you want to find the minimum-energy configuration of a molecule, for example, the tetrapropyl 
ammonium ion.  You are going to locate this minimum by making different sorts of translations and rotations of 
individual atoms and groups of atoms.  One such move is the rotation of a propyl arm. 
 How would we accomplish this task, given that we know (i) the positions of all of the atoms in the laboratory 
frame of reference and (ii) the angle of rotation, θ? 
 First, we must realize that the axis of rotation is the bond that connects N and C1.  So C2 and C3 and all of the 
hydrogen atoms attached to C1, C2, and C3 will change positions with this rotation. 
 
STEP 1.  Move Origin of system to N atom 
  For all atoms of interest, N, C1, C2, C3 and relevant hydgrogen, change coordinate systems from a 
system with the origin at T)1( )0,0,0(o =  to )2(o  equal to the position of the nitrogen. 
    

 [ ] [ ])2()1(1)2()1()2()1()1()1(1)2()2( ooBxooxBBx −+=−+=
−−

    (2.1b) 
 

Since )2(B  is the lab frame of reference, which is the default 3-D cartesian coordinate system, it is the identity matrix 
so that  
    

 [ ])2()1()1()2( ooxx −+=     
 
STEP 2.  Change the basis set from cartesian lab frame to appropriate basis set 
 This appropriate basis set corresponds to one vector parallel to the N-C1 bond and two other vectors which 
form a plane perpendicular to the N-C1 bond.  Of the nine elements in this transformation matrix, only six are 
independent.   
 To obtain the basis vector parallel to the N-C1 bond, just normalize the distance vector between N and C1. 
  

 2
N1C

2
N1C

2
N1CN1C )zz()yy()xx(r −+−+−=−      (3.?) 

 

 

T

N1C

N1C

N1C

N1C

N1C

N1C)2(
z r

zz
r

yy
r

xxb










 −−−
=

−−−       (3.?) 
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 To obtain the second new basis vector, realize that it must be perpendicular to the basis vector )2(
zb .  This is 

the only constraint on this vector.  Otherwise, the particular values of )2(
xb  are arbitrary.  In fact you can select any 

two of them arbitrarily.   
 
 0bbbbbbbb )2(

3,z
)2(

3,x
)2(

2,z
)2(

2,x
)2(

1,z
)2(

1,x
)2(

z
)2(

x =⋅+⋅+⋅=⋅   (3.?) 
 

One choice is to set 0b )2(
3,x =  and  

  

 
2)2(

2,z

2)2(
1,z bbs +=        (3.?) 

 
 

 
s

b
b

)2(
2,z)2(

1,x −=           (3.?) 

 
which forces  
 
  

 
s

b
b

)2(
1,z)2(

2,x =          (3.?) 

 
T)2(

1,z
)2(

2,z)2(
x 0

s
b

s
b

b











−=        (3.?) 

 
We can see that this was a very nice choice because )2(

xb  is now normalized and if you take the dot product of )2(
xb  

and )2(
zb , you will see they are orthogonal.  This is a bit of a trick, but the same old trick works every time.  In the 

second vector, zero the element that corresponds to the first vector, then switch the other two elements from the first 
vector, normalize, and switch one of the signs. 

To obtain the final basis vector, we have one remaining degree of freedom, if we choose to make this basis set 
orthonormal.  We have two constraints, namely that the dot product of the remaining basis vector be zero with each of 
the two already determined basis vectors (because they are perpendicular to each other). 
 

 0bb )2(
z

)2(
y =⋅           (3.?) 

 

 0bb )2(
x

)2(
y =⋅          (3.?) 

 

We have two equations and three unknowns.  We can pick one of the elements of )2(
yb  to specify the other two.  One 

choice that guarantees a perpendicular solution is 
 

 )2(
x

)2(
z

)2(
y bbb ×=          (3.?) 
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















−
−
−

=
)2(

1,x
)2(

2,z
)2(

2,x
)2(

1,z

)2(
3,x

)2(
1,z

)2(
1,x

)2(
3,z

)2(
2,x

)2(
3,z

)2(
3,x

)2(
2,z

)2(
y

bbbb
bbbb
bbbb

b        (3.?) 

 
This cross-product yields a vector of magnitude unity because )2(

xb  and )2(
zb  were already normalized. 

 
STEP 3.  Implement the change of basis transformation 

At this point we have the new basis set and we can transform the atomic positions of interest to the new 
frame. 
 

 )1()1()1(1)2()2( xMxBBx ==
−

        (2.?) 
 

Well, IB )1( =  and, because )2(B  is a matrix of orthonormal basis vectors, 
T)2(1)2( BB =

−
 so 

 

 )1(T)2()2( xBx =          (3.?) 
 
STEP 4.  Create Rotation Matrix 
 
















φφ−
φφ

=
−

100
0cossin
0sincos

A
ROTZ

        (3.?) 

 
STEP 5.  Apply Rotation Matrix 
 

 )2(
ROTZ

)2( xAx
−

=          (3.?) 
 
STEP 6. Unimplement the Change-of basis Transformation Matrix 
 

 )2()2()2()2(1)1()1( xBxBBx ==
−

       (3.?) 
 
STEP 7. Now shift the origin back to the lab frame of reference 
   
 )1()2()2()1( ooxx −+=          (3.?) 
 
These seven steps comprise the complete algorithm for rotation of a portion of a molecule about an arbitrary bond.  It 
is an example of how three transformations (change of origin, change of basis set, and rotation) are applied in series to 
effect an arbitrary rotation. 
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4.  Similarity Transformations         
 
 An in-depth discussion of the similarity transformations is given in your text “Advanced Engineering 
Mathematics” by Kreyzig.  In the 8th Edition, it appears in Section 7.5, starting on page 392.  This material here is only 
a brief summary. 
 If the matrix A  can be expressed as 
  

 PAPA )1(1)2( −=          (4.1) 
 

then this transformation is a similarity transformation. )1(A  and )2(A  will have the same eigenvalues. 
 

A special case of this transformation occurs when 
c

WP = , the matrix of normalized eigenvectors of )1(A
. 
 

[ ]n,c1,cc
w,,wW =          (4.2) 

 

 The result is that Λ=)2(A  where Λ  is the diagonal matrix of eigenvalues  
 

















λ

λ
=Λ

n

1

00
00
00

          (4.4) 

 
so that one could write 
  

 c
1

c WAW −=Λ          (4.5) 

or  

 1
cc WWA −Λ=          (4.6) 

 
When the similarity matrix produces a diagonal matrix of eigenvalues, this is called diagonalizing the matrix.  
Equation (4.6) is necessary in deriving the solution to a system of linear first-order ordinary differential equations. 
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A demonstration of this similarity transformation in Matlab is shown below.  In this example, we take an arbitrary 3x3 
real matrix A, compute its eigenvalues and eigenvectors.  We also compute the inverse of the eigenvector matrix.  We 
then show that the matrix B generated by similarity transformation has the same eigenvectors and eigenvalues as A. 
 
>> A = [1 2 3; 4 5 6; 7 8 10] 
 
A = 
     1     2     3 
     4     5     6 
     7     8    10 
 
>> [w,lambda] = eig(A) 
 
w = 
   -0.2235   -0.8658    0.2783 
   -0.5039    0.0857   -0.8318 
   -0.8343    0.4929    0.4802 
 
lambda = 
   16.7075         0         0 
         0   -0.9057         0 
         0         0    0.1982 
 
>> winv = inv(w) 
 
winv = 
   -0.4697   -0.5757   -0.7250 
   -0.9745   -0.1300    0.3396 
    0.1842   -0.8668    0.4742 
 
>> A_check = w*lambda*winv 
 
A_check = 
    1.0000    2.0000    3.0000 
    4.0000    5.0000    6.0000 
    7.0000    8.0000   10.0000 
 
>> diff1 = norm((A-A_check),2) 
 
diff1 =   3.7151e-15 
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A second demonstration of this similarity transformation in Matlab is shown below.  In this example, we take an 
arbitrary 3x3 real matrix A and an arbitrary 3x3 matrix real P. We also compute the inverse of P.  We then show that 
the matrix A can be reconstituted in terms of the similarity transformation. 
 
 
>> A = [1 2 3; 4 5 6; 7 8 10] 
 
A = 
     1     2     3 
     4     5     6 
     7     8    10 
 
>> P = [1 2 7; 6 5 4; 9 8 10] 
 
P = 
     1     2     7 
     6     5     4 
     9     8    10 
 
>> Pinv = inv(P) 
 
Pinv = 
   -2.0000   -4.0000    3.0000 
    2.6667    5.8889   -4.2222 
   -0.3333   -1.1111    0.7778 
 
>> B = Pinv*A*P 
 
B = 
    3.0000    6.0000   21.0000 
   12.6667    7.2222   -8.2222 
    1.6667    2.2222    5.7778 
 

>> [wA,lambdaA] = eig(A) 
 
wA = 
   -0.2235   -0.8658    0.2783 
   -0.5039    0.0857   -0.8318 
   -0.8343    0.4929    0.4802 
 
lambdaA = 
   16.7075         0         0 
         0   -0.9057         0 
         0         0    0.1982 
 
>> [wB,lambdaB] = eig(B) 
 
wB = 
   -0.6779   -0.5896    0.5557 
   -0.6934    0.7989   -0.8160 
   -0.2443   -0.1186    0.1590 
 
lambdaB = 
   16.7075         0         0 
         0   -0.9057         0 
         0         0    0.1982 
 
 
>> difflambda = 
norm((lambdaA-lambdaB),2) 
 
difflambda =     8.5265e-14 
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5.  Permutations         
 
5.A.  Introduction to Permutations  
 

A permutation is an arrangement of all or part of a set of objects.  A permutation is a grouping of elements 
arranged in a particular way.  For example, how many ways can you order the letters A, B & C?  The six permutations 
are ABC, ACB, BAC, BCA, CAB and CBA.  All sequences contain the same letters but in different orders.  The key 
concept in permutations is that ‘order matters’. 

The number of permutations of n distinct objects is n!  That is read as “n factorial”.   
 

123)...3)(2)(1(! ⋅⋅−−−= nnnnn        (5.1) 
 

The factorial only applies to non-negative integers.  By definition, the factorial of zero is 1,  
 

1!0 ≡            (5.2) 
 

The number of permutations of n distinct objects taken r at a time, where r ≤  n, is 
 

)!(
!
rn

nPrn −
=           (5.3) 

 
For the example above, where we ordered three letters, n = 3 and r = 3, so the result is  

 

6
1

123
!0
!3

)!33(
!3

33 =
⋅⋅

==
−

=P     

 
For the example above, where we ordered two of the letters, n = 3 and r = 2, so the result is  

 

6
1

123
!1
!3

)!23(
!3

23 =
⋅⋅

==
−

=P     

 
The six permutations are AB, AC, BA, BC, CA and CB. 
 

The number of permutations in which some of the objects are indistinguishable is given by the general 
formula for permutations of multisets, in which you have 1m  values of type 1, 2m  values of type 2, etc., where 

nm
i

i =∑
=



1

 

 

∏
=

=








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,,,

i
im

n
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n
        (5.4) 

 
So for example the number of permutations of (A, A, A, B, B, and C) is  
 

60
!1!2!3

!6

!

!
1,2,3

6

1
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
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5.B.  Permutations and Linear Algebra 
 Permutations are relevant in linear algebra.  Consider the system of linear algebraic equations,  
 

2222121

1212111

bxaxa
bxaxa

=+
=+

 

 
so that  
 

 







=

2221

1211

aa
aa

A  

 
consider the permutation matrix,  
 

 







=

01
10

P  

 
then operation of the permutation matrix on A  as shown below 
 

 







=
















==

1211

2221
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1211

01
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aa
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aa
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APQ  

 
generates a matrix Q  in which only the order of the rows of A  has changed.   

If we consider a vector 
 

 







=

2

1

x
x

x  

 
then operation of the permutation matrix on the x as shown below 
 

 







=
















==

1

2

2

1

01
10

x
x

x
x

xPy  

 
generates a vector y  in which only the order of the rows of x  has changed.  Here we have presented a simple 2x2 

example, in which there are only 222 =P  permutations, with permutation matrices given by 







10
01

 and 







01
10

. 
 
 For the 3x3 case, there are 633 =P  permutation matrices: 
 








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

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
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010
001

, 


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
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






100
001
010

, 
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
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.   
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If we equate, 
















=
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
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x
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1

 to the set ABC, then the six permutations matrices given above result respectively in 

the following 6 permutations, ABC, ACB, BAC, BCA, CAB and CBA. 
By induction, the permutation matrix can be generalized to any nxn  system.  The permutation matrix is an 

orthonormal matrix.  It is orthogonal and normalized.  Thus the inverse of a permutation matrix is its transpose. 
 
The concept of a permutation matrix can also be extended to non-square matrices, nxm .  Consider the 3x4 

permutation matrix,  
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The operation of the permutation matrix on the x as shown below 
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Here we have left a second slot empty.   

For an nxm , the number of such permutations can be expressed in terms of the multiset where we have m 
distinct objects and ( mn − ) indistinct (empty) objects.  So we have 1...321 ===== mkkkk  and 

mnkm −=+1  
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For example, if 4=n  and 3=m , then there are 24
1,1,1,1

4
=








permutations.  For example, if 5=n  and 3=m

, then there are 60
2,1,1,1

5
=








permutations.   

 
Dealing with permutations in this way are useful.  Consider the classical “non-square assignment problem”.  (The 
“square assignment problem” is a subset of this problem in which mn = .)  You have m  workers to fill n  jobs.  The 
cost associated with each worker in each job is given by the cost matrix, C , an mxn .  The element, ijc , is the cost 

associated with putting worker i in job j.  The cost per worker, f , an 1mx  vector, for one arrangement of workers, 

y , is given by  
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yCf =  
 

The total cost is the 1L  norm of this vector, where the pL norm is defined as 
pm

i

p
i

p fL

1

1








≡ ∑

=

. 

 The optimal distribution that results in the minimum cost is a permutation problem.  If we make an initial 
guess 1x , corresponding to [ ]mx T ..3,2,11 = , then we can write the cost per job as  
 

1xPCf =  
 
where P  is the nxm  permutation matrix.   
The solution to this linear optimization problem is called the “Hungarian Algorithm” or sometimes the 
“Kuhn-Munkres” algorithm.  The original reference is: 
 
Kuhn, H.W., The Hungarian Method for the assignment problem. Naval Research Logistics Quarterly, 1955. 2: p. 83–
97. 
 
There is a description of it here:  https://en.wikipedia.org/wiki/Hungarian_algorithm. 
 
A routine in MATLAB, munkres.m, implements this optimization.  The file is available at 
https://www.mathworks.com/matlabcentral/fileexchange/20652-hungarian-algorithm-for-linear-assignment-problems--v2-3- 
 
Using this code, on a 2x2 sample cost matrix is shown below. 
 
>> costmat = [1 4; 2 1]; 
>>  [ASSIGN,COST] = munkres(costmat) 
 
ASSIGN =     1     2 
COST =     2 
 
Using this code, on a 2x3 sample cost matrix is shown below. 
 
>>  costmat23 = [1 4; 5 5; 2 1]; 
>> [ASSIGN,COST] = munkres(costmat23) 
 
ASSIGN =     1     0     2 
COST =     2 
 
In this output, the permutation matrix is collapsed into a vector named assign.  For non-zero values elements of the 
assign vector, the permutation matrix corresponding to element (i,assign(i)) is set to 1.  

Thus the assign matrix of [1,2] corresponds to 







10
01

 and the assign matrix of [1,0,2] corresponds to a permutation 

matrix 

















10
00
01

 so that 1xPy =  where [ ]mx T ..3,2,11 =  and y  is the assign vector. 

  

https://en.wikipedia.org/wiki/Hungarian_algorithm
https://www.mathworks.com/matlabcentral/fileexchange/20652-hungarian-algorithm-for-linear-assignment-problems--v2-3-
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6. Singular Value Decomposition 
 
6.A.  Introduction to Singular Value Decomposition 
 
Singular Value Decomposition (SVD) is a factorization of a real or complex matrix.   
 
Suppose M  is an mxn matrix, real or complex. The singular value decomposition of M  is of the form 
 

*VUM Σ=           (6.1) 
 
where 
 
U  is an mxm  unitary matrix. 

Σ  is a diagonal mxm  matrix with non-negative real numbers on the diagonal, and  
*V  is an nxn  unitary matrix. 

 
If complex, a unitary matrix satisfies the relationship:  the conjugate transpose is the inverse. 
If real, a unitary matrix satisfies the relationship:  the transpose is the inverse.  This means that the matrix is 
orthonormal.   
 
The diagonal entries, iσ , Σ are known as the singular values of M .  
 
The singular value decomposition can be performed based on the following observations.   

U  contains the set of orthonormal eigenvectors of *MM . 
*V  contains the set of orthonormal eigenvectors of MM * . 

Σ  contains  the square roots of the non-zero eigenvalues of both *MM  and MM * . 
 
In the example below, we demonstrate the singular value decomposition and the various observations given above 
using Matlab.  The script is provided first.  Then the output from Matlab is given.  We should note that the order of the 
singular values in Σ  obtained from the svd command may be different than the order of the eigenvalues obtained 
from the eig command.  Therefore, we must resort the eigenvalues and the corresponding eigenvectors.  This resorting 
uses the Hungarian algorithm for optimizing the cost as described in the previous section.  The cost matrix is simply 
the square of the difference between the singular values and the eigenvalues. 
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script:  svd_script.m 
 
clear all; 
close all; 
format short 
  
% create a matrix 
A = [ 1 2 3; 4 5 6; 7 8 10] 
% perform svd 
[U,S,V] = svd(A) 
% confirm validity of svd 
A_check = U*S*V' 
diff_A = norm((A-A_check),2) 
% compute eigenanalyis of AAt 
AAt = A*A' 
[WAAt,LAAt] = eig(AAt) 
% compute eigenanalyis of AtA 
AtA = A'*A 
[WAtA,LAtA] = eig(AtA) 
S_check = sqrt(LAAt)  
% 
%  To compute the norms between matrices 
%  requires that the eigenvalues and eigenvectors 
%  be listed in the proper order. 
%  To find this order, we will use the  
%  Hungarian algorithm. 
% 
n = max(size(A)); 
indx = zeros(n,1); 
costmatrix = zeros(n,n); 
for i = 1:1:n 
    for j = 1:1:n 
        costmatrix(i,j) = (S(i,i) - S_check(j,j) )^2; 
    end 
end 
costmatrix 
[indx,cost] = munkres(costmatrix) 
% 
%  resort eigenvalue matrix to compare with S 
% 
for i = 1:1:n 
    ii = indx(i); 
    S_check_sorted(i,i)  = S_check(ii,ii); 
end 
S_check_sorted 
diff_L = norm((LAAt-LAtA),2) 
diff_S = norm((S-S_check_sorted),2) 
% 
%  resort eigenvectors of AAt to compare with U 
% 
for i = 1:1:n 
    for j = 1:1:n 
       ii = indx(i); 
       U_check(j,i)  = WAAt(j,ii); 
    end 
end 
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% 
%  also get correct sign of eigenvectors of AAt 
% 
eps = 1.0e-8; 
for i = 1:1:n 
    delta_U = U(1,i) - U_check(1,i); 
    if ( abs(delta_U) > eps)       
       U_check(1:n,i)  = -U_check(1:n,i); 
    end 
end 
U_check 
diff_U = norm((U-U_check),2) 
% 
%  resort eigenvectors of AtA to compare with V 
% 
for i = 1:1:n 
    for j = 1:1:n 
       ii = indx(i); 
       V_check(j,i)  = WAtA(j,ii); 
    end 
end 
% 
%  also get correct sign of eigenvectors of AtA 
% 
eps = 1.0e-8; 
for i = 1:1:n 
    delta_V = V(1,i) - V_check(1,i); 
    if ( abs(delta_V) > eps)       
       V_check(1:n,i)  = -V_check(1:n,i); 
    end 
end 
V_check 
diff_V = norm((V-V_check),2) 
  
 



D. Keffer, University of Tennessee, Dept. of Materials Science & Engineering, MSE 510 (last updated 01/17/17) 

30 

output of svd_script.m 
 
>> svd_script 
 
A = 
    19     2     3 
     4     5     6 
     7     8    10 
 
U = 
   -0.7743    0.6327   -0.0136 
   -0.3223   -0.4127   -0.8519 
   -0.5447   -0.6552    0.5235 
 
S = 
   23.3067         0         0 
         0   10.9901         0 
         0         0    0.1288 
 
V = 
   -0.8501    0.5263   -0.0195 
   -0.3225   -0.5496   -0.7707 
   -0.4163   -0.6488    0.6369 
 
A_check = 
   19.0000    2.0000    3.0000 
    4.0000    5.0000    6.0000 
    7.0000    8.0000   10.0000 
 
diff_A =   6.2456e-15 
 
AAt = 
   374   104   179 
   104    77   128 
   179   128   213 
 
WAAt = 
    0.0136   -0.6327    0.7743 
    0.8519    0.4127    0.3223 
   -0.5235    0.6552    0.5447 
 
LAAt = 
    0.0166         0         0 
         0  120.7821         0 
         0         0  543.2013 
 
AtA = 
   426   114   151 
   114    93   116 
   151   116   145 
 
WAtA = 
    0.0195   -0.5263    0.8501 
    0.7707    0.5496    0.3225 
   -0.6369    0.6488    0.4163 
 
 

LAtA = 
    0.0166         0         0 
         0  120.7821         0 
         0         0  543.2013 
 
S_check = 
    0.1288         0         0 
         0   10.9901         0 
         0         0   23.3067 
 
costmatrix = 
 
  537.2125  151.6984    0.0000 
  117.9669    0.0000  151.6984 
    0.0000  117.9669  537.2125 
 
indx = 
     3     2     1 
 
cost =   4.3153e-26 
 
S_check_sorted = 
   23.3067         0         0 
         0   10.9901         0 
         0         0    0.1288 
 
diff_L =   1.1369e-13 
 
diff_S =   2.0769e-13 
 
U_check = 
   -0.7743    0.6327   -0.0136 
   -0.3223   -0.4127   -0.8519 
   -0.5447   -0.6552    0.5235 
 
diff_U =   6.3485e-16 
 
V_check = 
   -0.8501    0.5263   -0.0195 
   -0.3225   -0.5496   -0.7707 
   -0.4163   -0.6488    0.6369 
 
diff_V =   4.1483e-16 
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6.B.  Singular Value Decomposition:  Application to Optimal Rotation Matrices 
 
The Kabsch algorithm is a method for calculating the optimal rotation matrix that minimizes the root mean squared 
deviation between two paired sets of points.  It is a kind of point set registration involving only rotation.   
 
Consider a set of n  points in d  dimensions, P , which is a dxn  matrix.  Each row corresponds to a dimension, e.g. 
x, y and z in 3-D and each column corresponds to an individual point.  Also consider a second set of points given by 
Q , which is also a dxn  matrix. 

 
The  cross-covariance matrix A , a dxd matrix is given by  
 

'QPA =           (6.2) 

 
The SVD of A can be expressed as 
 

*VUA Σ=           (6.3) 
 
The rotation matrix to rotate P  into Q  is given by  

 
'UVM

QP
=

→
          (6.4) 

 
The rotation matrix to rotate Q  into P  is given by the inverse rotation matrix (or the transpose) since this rotation 

matrix is real and orthonormal. 
 

'' VUMM
PQPQ

==
→→

        (6.5) 

 
The application of this rotation matrix  minimizes the root mean squared deviation between two paired sets of points, 
P  and Q . 

 
In the example below, we provide a script kabsch.m that generates a set of 5 points in 3-D space.  We use the Euler 
angles to create an arbitrary rotation matrix.  We apply that rotation matrix and generate a new, rotated set of points.  
We then treat the original set and the rotated set as P  and Q .  We perform the SVD operation, reconstitutes the 

rotation matrix and show that when the rotation matrix obtained from SVD is applied to Q , it perfectly reproduces the 

original P .  After the script, we reproduce the output generated by the script including a plot of the original, rotated 
and final points. 
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clear all; 
close all; 
format short; 
% 
%  define a set of n points in d-dimensions 
n = 5; 
d = 3; 
ptran = [1.0000000       0.0000000       0.0000000 
0.0000000       2.0000000       0.0000000 
0.0000000       0.0000000       3.0000000 
4.0000000       5.0000000       0.0000000 
1.0000000       1.0000000       1.0000000] 
% transpose 
p = transpose(ptran); % a dxn matrix 
 
% 
%  create random rotation matrix 
% 
pi = 2.0*asin(1.0); 
d2r = pi/180.0;  % degrees to radians 
alpha=17*d2r; % first Euler rotation angle 
beta=67*d2r; % second Euler rotation angle 
gamma=41*d2r; % third Euler rotation angle 
%  first rotation matrix (about z-axis) 
A1=[cos(alpha)  sin(alpha) 0 
    -sin(alpha) cos(alpha) 0 
    0 0 1]; 
%  second rotation matrix (about x-axis) 
A2=[1 0 0 
    0 cos(beta) sin(beta) 
    0 -sin(beta) cos(beta)]; 
%  third rotation matrix (about z-axis) 
A3=[cos(gamma) sin(gamma) 0 
    -sin(gamma) cos(gamma) 0 
    0        0 1]; 
%  generalized, arbitrary rotation matrix 
Mrot=A1*A2*A3 % a dxd matrix 
 
% 
%  apply random rotation matrix 
% 
q = Mrot*p; % a dxn matrix 
qtran = transpose(q) % a nxd matrix 
 
% 
%  use SVD to compute optimal rotation matrix 
%  to map q back onto ptran 
% 
Amat = p*qtran;  % a dxd matrix 
 
[U,S,V] = svd(Amat); 
%[vmat,smat,wmat] = svd(Amat) 
Ut = transpose(U); 
rotmat = V*Ut % a dxd matrix 
rott = transpose(rotmat) % a dxd matrix 
 
% 
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%  apply inverse (transpose) of rotation matrix 
%  obtained from SVD to q 
% 
qnew = rott*q; % a dxn matrix 
qnewt = transpose(qnew) 
% check 
diff = norm((p - qnew),2) 
 
% 
%  create a plot 
% 
figure(1) 
scatter3(p(1,1:n),p(2,1:n),p(3,1:n),'filled') 
hold on; 
scatter3(q(1,1:n),q(2,1:n),q(3,1:n),'filled') 
hold on; 
scatter3(qnew(1,1:n),qnew(2,1:n),qnew(3,1:n),'MarkerEdgeColor','k') 
legend('original', 'rotated','final'); 
hold off; 
view(-30,10) 
xlabel('x'); 
ylabel('y'); 
zlabel('z'); 
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>> kabsch 
 
ptran = 
     1     0     0 
     0     2     0 
     0     0     3 
     4     5     0 
     1     1     1 
 
Mrot = 
    0.6468    0.7136    0.2691 
   -0.4658    0.0902    0.8803 
    0.6039   -0.6947    0.3907 
 
qtran = 
    0.6468   -0.4658    0.6039 
    1.4272    0.1804   -1.3894 
    0.8074    2.6408    1.1722 
    6.1552   -1.4122   -1.0579 
    1.6295    0.5047    0.2999 

 
rotmat = 
 
    0.6468    0.7136    0.2691 
   -0.4658    0.0902    0.8803 
    0.6039   -0.6947    0.3907 
 
rott = 
    0.6468   -0.4658    0.6039 
    0.7136    0.0902   -0.6947 
    0.2691    0.8803    0.3907 
 
qnewt = 
    1.0000   -0.0000    0.0000 
   -0.0000    2.0000   -0.0000 
   -0.0000    0.0000    3.0000 
    4.0000    5.0000   -0.0000 
    1.0000    1.0000    1.0000 
 
diff =   4.6534e-15 

 

 
Visualization of the registration process via the Kabsch algorithm. 
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Appendix I.  Derivation of the generalized crystal cell transformation matrix 
 
Purpose: 
Given axes magnitudes, a, b, and c, and axes angles  θAB, θAC, and θBC = 90°, derive the generalized transformation 
matrix, B , that will convert atomic position in the crystal-cell reference frame to atomic position in cartesian 

coordinates with the standard basis vectors ( k,j,i ). 
 
Derivation: 

There is some arbitrariness to how one orientates the cartesian axes with respect to the crystal cell axes.  In 
this case, we are going to keep the x-y face of the unit cell perpendicular to the Cartesian z-axis.   Given this condition: 
 
 0ka =⋅           (A1.1) 
 
and 
 
 0kb =⋅           (A1.2) 
 
The consequence of these two statements immediately is that 
 
 0B 1,3 =  and  0B 2,3 =        (A1.3) 
 
Explicity evaluate the dot product in equations (A1.1) and (A1.2) to verify this. 
 We have one more degree of freedom regarding the cartesian axes orientation. i and j  must be 

perpendicular to k but still that leaves an arbitrary rotation of i and j  within the a-b plane.  Let’s arbitrarily choose 

that i is parallel to a .  In this case  
 
 0ja =⋅           (A1.4) 
 
so that  
 
 0B 1,2 =           (A1.5) 
 
 Because we know the magnitude of a , and we have specified 0B

1,3
=  and 0B

1,2
= ,  we can determine 

the last remaining element of that column, 
1,1

B , by the 3-D Pythagorean theorem: 

  

 ( ) 2
3

1m

2
1,m aB =∑

=

         (A1.6) 

 
so that 
  

 aBBaB 2
1,3

2
1,2

2
1,1 =−−=         (A1.7) 

 
 At this point we have the first column and one element of the second column.  In order to determine the other 
two elements of the second column, we can use our knowledge of the angles between a  and b , coupled with some 
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simple trigonometry.  Because the i-j plane is the same as the a-b plane, we can project b  onto  i and j  to get those 
components: 
  
 AB2,1 cosbB θ⋅=          (A1.8) 
  
 AB2,2 sinbB θ⋅=          (A1.9) 
 
 At this point we have the first two columns of the transformation matrix.  Now, to obtain the final column, we 
use the invariance of the dot product  with respect to coordinate systems to write two equations: 
 
 AC13 cosbbac θ=⋅=⋅         (A1.10) 
 
and 
  
 BC23 cosbbbc θ=⋅=⋅         (A1.11) 
 
and we use the fact that we know the magnitude of c  
  

 ( ) 2
3

1m

2
3,m cB =∑

=

         (A1.12) 

 
In equations (A1.10), (A1.11), and (A1.12), we have three equations, from which we can find three unknowns, which 
constitute the third column of the transformation matrix, 3b .  The rearrangement for the elements of 3b  is just a little 
bit of ugly algebra, as follows.  First we rearrange equations (A1.10) and (A1.11) to find the first two elements of the 
column vector as a function of the last element. 
 
 2x3,31x3,1 fBfB +⋅=          (A1.13) 
 
 2y3,31y3,2 fBfB +⋅=          (A1.14) 
 
where the f constants are determined by the first two (already determined basis vectors) 
 

 

22
1,1

1,22,1

32
1,1

1,32,1

1y

B
B

BB

B
B

BB

f
+

⋅

+
⋅

−=         (A1.15) 

 

 

22
1,1

1,22,1

BCAC
1,1

2,1

2y

B
B

BB

coscos
B
B

f
+

⋅

θ+θ

=         (A1.16) 

 

 
1,1

1,3
1y1,21x B

B
fBf +⋅=          (A1.17) 
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1,1

AC
2y1,22x B

cos
fBf

θ
−⋅=         (A1.18) 

 
 We then need only 3,3B , which we obtain by first substituting equations (A1.15)-(A1.18) into equations 
(A1.13) and (A1.14).  Second, we substitute the resulting equations into equation (A1.12), which is then only a 
function of 3,3B .  We rearrangeto find: 
 

 0cBbBa qf3,3qf
2

3,3qf =++         (A1.19) 
 
where 
 

 2
1x

2
1yqf ff1a ++=          (A1.20) 

 
 )ffff(2b 2x1x2y1yqf +⋅=         (A1.21) 
 

 22
2y

2
2xqf cffc −+=          (A1.22) 

 
We use the quadratic formula to solve 
 

 
qf

qfqf
2

qfqf
3,3 a2

ca4bb
B

−±−
=        (A1.23) 

 
We choose the positive root.  Once we have 3,3B , we can substitute back into equations (A1.13) and (A1.14) to obtain 
the other two elements of the third basis vector. 
 
Comments: 
 This derivation is not the most elegant creature but it has a couple virtues.  The first virtue is that the 
derivation is easily understandable knowing only algebra and trigonometry.  The second virtue is that this formulation 
as written above is easily amenable to computer usage.  If you look carefully at the above equations, the unknowns 
always appear on the left-hand-side of the equation and the knowns appear on the right-hand-side which is as the 
computer must have it, in order to solve. 
 
Example: 
 
 Consider a crystal cell with axes defined by a = 14Å, b=14Å, c=8Å.  θAB = 120°, θAC = 90°, θBC = 90°.  Find 
the transformation matrix to the standard 3-D Cartesian coordinate system.  
 
 0B 1,3 =  and  0B 2,3 =        (A1.3) 
 
 0B 1,2 =           (A1.5) 
 

14aBBaB 2
1,3

2
1,2

2
1,1 ==−−=        (A1.7) 

 
 7cosbB AB2,1 −=θ⋅=         (A1.8) 
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 12.12sinbB AB2,2 =θ⋅=         (A1.9) 
 

 0
B

B
BB

B
B

BB

f

22
1,1

1,22,1

32
1,1

1,32,1

1y =
+

⋅

+
⋅

−=         (A1.15) 

 

 0
B

B
BB

coscos
B
B

f

22
1,1

1,22,1

BCAC
1,1

2,1

2y =
+

⋅

θ+θ

=        (A1.16) 

 

 0
B
B

fBf
1,1

1,3
1y1,21x =+⋅=         (A1.17) 

 

 0
B

cos
fBf

1,1

AC
2y1,22x =

θ
−⋅=         (A1.18) 

 

 1ff1a 2
1x

2
1yqf =++=         (A1.20) 

 
 0)ffff(2b 2x1x2y1yqf =+⋅=         (A1.21) 
 

 64ccffc 222
2y

2
2xqf −=−=−+=        (A1.22) 

 
We use the quadratic formula to solve 
 

 8
a2

ca4bb
B

qf

qfqf
2

qfqf
3,3 ±=

−±−
=        (A1.23) 

 
 0fBfB 2x3,31x3,1 =+⋅=         (A1.13) 
 
 0fBfB 2y3,31y3,2 =+⋅=         (A1.14) 
 
So that the transformation matrix is  
 

 
















 

−
=
















 θ

θ
=

800
012.120
0714

c00
0sinb0
0cosba

B AB

AB
)1(        
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Appendix II.  Transformations from Cartesian to Spherical and Cylindrical Coordinates  
 
Another set of common transformations (nonlinear transformations) are given below. 
 
 
AII.1  from Cartesian to Cylindrical  
 

 22 yxr +=  
 

 





=θ

x
ytana  

 
 zz =  
 

 
AII.2   from Cylindrical to Cartesian  
 
 θ= cosrx  
 
 θ= sinry  
 
 zz =  
 

 
AII.3  from Cartesian to Spherical  
 

 222 zyxr ++=  
 

 





=θ

x
ytana  

 

 














+
=φ

22 yx
ztana  

 

 
AII.4  from Spherical to Cartesian  
 
 φθ= coscosrx  
 
 φθ= cossinry  
 
 φ= sinrz  
 

 
AII.5  from  Cylindrical  to Spherical 
 

 22 zrr +=  
 
 θ=θ  
 

 





=φ

r
ztana  

 

 
AII.6  from Spherical to Cylindrical 
 
 φ= cosrr  
 
 θ=θ  
 
 φ= sinrz  
 

  
 


