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I.  Problem Formulation 
 
 Consider a fluid containing NA moles of component A with molecular weight mA and NB 
moles of component B with molecular weight mB, initially above the critical temperature of the 
mixture, Tc,mix, in a closed volume, V.  We remove heat at a constant rate, Q, causing the 
temperature to drop.  Eventually the system will fall into the two phase region and phase 
separate.  We want to describe the time dependence of the system.  Specifically, we want the 
following variables as a function of time:  the temperature, T, the pressure, p, the vapor fraction, 
φV, the density of the vapor phase, ρV, the density of the liquid phase, ρL., the mass fraction of A 
in the vapor phase, wA,V, and the mass fraction of A in the liquid phase, wA,L. 
 We begin our analysis with the overall mass balance.  We define the system density to be  
 

V
Nm

=ρ           (1) 

 
Since the system is closed and the volume is fixed, the density is constant 
 

0=
∂
ρ∂
t

          (2) 

 
We can also examine a mass balance on component A.  Again there is nothing moving in or out 
of the system and there is no generation of A, so we have the accumulation term equal to zero. 
 

0=
∂
ρ∂

=
∂
ρ∂

t
w

t
AA          (3) 

 
Since the density is constant, the mass fraction of A is also constant. 

We are going to define volume fractions as 
 

V
VL

L =φ   and  
V
VV

V =φ      (4) 

 
where 
 

VL φ+φ=1           (5) 
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The volume of this system is constant,  
 

VL VVV +=           (6) 
 
The total mass of this system is constant 
 

( ) ( )
( ) ( )BVBAVABLBALA

VBVALBLA

VL

mNmNmNmN
MMMM

MMM

,,,,

,,,,

+++=

+++=
+=

      (7) 

 
The mass of component A in this system is constant 
 

AVAALAVALAA mNmNMMM ,,,, +=+=       (8) 
 
The density of each of the phases is 
 

L

BLBALA

L

L
L V

mNmN
V
M ,, +

==ρ  and 
V

BVBAVA

V

V
V V

mNmN
V
M ,, +

==ρ  (9) 

 
The density of the components in each of the phases are 
 

L

LA
LLALA V

M
w ,

,, =ρ=ρ ,  
L

LB
LLBLB V

M
w ,

,, =ρ=ρ , 

V

VA
VVAVA V

M
w ,

,, =ρ=ρ ,  
V

VB
VVBVB V

M
w ,

,, =ρ=ρ ,    (10) 

 
Substituting equation (9) into equation (7) yields 
 

VVLL VVVM ρ+ρ=ρ=         (11) 
 
Substituting equations (4) and (5) into equation (11) yields 
 

( ) VVLVVVLL ρφ+ρφ−=ρφ+ρφ=ρ 1       (12) 
 
Solving for the vapor fraction yields 
 

LV

L
V ρρ

ρρφ
−
−

=           (13) 

 
We can now repeat these past few steps for component A.  Substituting equation (10) into 
equation (8) yields 
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VVALLAA VVM ,, ρ+ρ=         (14) 

 
Substituting equations (4) and (5) into equation (14) yields 
 
 ( ) VVAVLAVVALLAA φρ+φ−ρ=φρ+φρ=ρ ,,,, 1      (15) 
 
Solving for the vapor fraction yields 
 

LAVA

LAA
V

,,

,

ρ−ρ

ρ−ρ
=φ          (16) 

 
 We will require a balance on the total mass of the vapor phase 
 

( ) ( )
vap

VVVV r
t

V
t
V

=
∂
φρ∂

=
∂
ρ∂

        (17) 

 
where rvap is the rate of vaporization with units of mass/time.   
 We will also require a balance on the mass of A in the vapor phase 
 

( ) ( ) ( ) ( )

t
w

VrVw

t
w

t
wV

t
w

V
t

V
t
V

VA
VVvapVA

VA
VV

VV
VA

VVVAVVAVVA

∂
∂

+=

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

=
∂

∂
=

∂
∂

=
∂

∂

,
,

,
,

,,,

φρ

φρφρφρφρρ

  (18) 

 

In equations (17) and (18) there are two unknown variables, rvap and 
t

w VA

∂
∂ , .  For the moment, 

we leave rvap and 
t

w VA

∂
∂ ,  as unknowns. 

We will also require an energy balance, 
 

Q
t
UV

−=
∂

∂ ρ           (19) 

 
where U is the specific internal energy of the entire system and ΔUvap is the specific internal 
energy of vaporization.   The internal energy U can be expressed as 
 

BBAA

VVVLLL

VVLL

VVVLLL
V

V
L

L

mNmN
UVUV

VV
UVUV

U
Nm

mN
U

Nm
mNU

+
ρ+ρ

=
ρ+ρ
ρ+ρ

=+=   (20) 

 
where UL and UV are the specific internal energies of the liquid and vapor phases.  Substituting 
equation (20) into equation (19) we have 
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( ) Q

t
UVUV VVVLLL −=

∂
+∂ ρρ         (21) 

 
Substitute in equation (12) 
 

( )( ) Q
t

UUV VVVLVV −=
∂

+−∂ φρφρρ        (22) 

 
Use the product rule to differentiate, 
 

( ) ( ) Q
t

UUV
t

UUV
t

UV VV
LV

LV
VV

L −=
∂

∂
−+

∂
−∂

+
∂
∂ φρφρρ     (23) 

 
Substitute in equation (7) into equation (14) 
 

( ) ( ) QrUU
t

UUV
t

UV vapLV
LV

VV
L −=−+

∂
−∂

+
∂
∂ φρρ      (24) 

 
We recognize the presence of the internal energy of vaporization, 
 

( ) QrU
t

UUV
t

UV vapvap
LV

VV
L −Δ−=

∂
−∂

+
∂
∂ φρρ      (25) 

 
where the internal energy of vaporization is defined as LVvap UUU −≡Δ .   Substitute in equation 
(11) into equation (25) 
 

QrU
t

UV
t

UV vapvap
V

VV
L

LL −Δ−=
∂
∂

φρ+
∂
∂

φρ       (26) 

 
At this point, this is precisely the same energy balance we had for the single component system. 
 
 Now, in a one-phase region of a binary mixture, we have three degrees of freedom and 
the internal energy is a function of temperature, density, and composition. 
 

( )AwTUU ,,ρ=          (27) 
 
Therefore, the time derivative is going to be written as 
 

t
w

w
U

t
U

t
T

T
U

t
U A

TAwTw AA
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂

ρρ ,,,

     (28) 
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The presence of the time derivative of the temperature is acceptable.  We will use the energy 
balance to solve for the temperature as a function of time.  The presence of the time derivatives 
of the density and the composition is a problem, since we have not yet presented a way to 
calculate those time derivatives.  However, in a one-phase system, the density and the mass 
fraction of A are constants.  Therefore 
 

t
T

T
U

t
U

Aw ∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂

ρ,

 for closed, one-phase system with fixed volume  (29) 

 
So our energy balance in the one phase system is 
 

AwT
UV

Q
t
T

,ρ
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

ρ

−
=

∂
∂          (30) 

 
Now when we have two phases in a binary system, we have two degrees of freedom and 

the internal energy is a function of  temperature and density only 
 

( )( )LLALLL TwTUU ρρ= ,,, ,  and ( )( )VVAVVV TwTUU ρρ= ,,, ,    (31) 
 
Therefore, the time derivative is going to be written as 
 

t
w

w
UU

t
T

T
w

w
U

T
U

t
w

t
T

T
w

w
U

t
U

t
T

T
U

t
w

w
U

t
U

t
T

T
U

t
U

L

satL

A

satA

L

TsatL

L

sat

A

satA

L

sat

L

L

satL

A

sat

A

satA

LL

TsatL

L

sat

L

A

satA

LL

TsatL

L

sat

LL

L

L

L

∂
ρ∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+

∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
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∂
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⎜
⎝
⎛
∂
∂
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⎟
⎟
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⎞
⎜
⎜
⎝

⎛
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⎜⎜
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⎛
ρ∂
∂

+
∂
∂

⎟
⎠
⎞
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⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂

ρ

ρ

ρ

,,

,,

,,

  

for a closed two-phase system with fixed volume    (32) 
 
This equation has a fundamental problem in that it includes a time derivative of the liquid 
density.  We did not see this problem in the single component version of this solution because 
when we had only one component, there was only one degree of freedom in the system and that 
was the temperature.  It was okay to have a time derivative of the temperature.   
 At this point we have to do something new to eliminate the presence of the time 
derivative of the liquid density in the simulation. 
 It is true that, due to the constraints imposed on our system by the fact that our system 
volume is constant, all the variables that we are going to determine from thermodynamic 
constraints (φV, ρV, ρL, wA,L, and wA,V) are determined once the temperature is known.  In that 
sense, we can acknowledge that they are all functions of temperature, ie. )(TLρ , and if we 
differentiate this expression we have, 
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t
T

T
T

t
T

AMVM

LL

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
ρ∂

=
∂
ρ∂

,,

)()(        (33) 

 
However, the fundamental problem is that we do not know what this partial derivative looks like.  
We are having to solve for ρL at the same time that we solve for T, from the algebraic constraints 

imposed by thermodynamics.  We have no differential equation for 
AMVM

L

T
T

,,

)(
⎟
⎠
⎞

⎜
⎝
⎛

∂
ρ∂ .  The only 

equation we have that we have not used yet is equation (15). 
 
 ( ) VVAVLAVVALLAA φρ+φ−ρ=φρ+φρ=ρ ,,,, 1      (15) 
 
One can think of this as an additional constraint that must be satisfied along with the 
thermodynamic criteria.  If we conceptually move this material constraint into a thermodynamic 
constraint, then we have only one degree of freedom at VLE.  In this case, we can write,  
 

( ) ( )( )TwTTUU LALLL ,,,ρ=  and ( ) ( )( )TwTTUU VAVVV ,,,ρ=    (34) 
 
so that  
 

t
T

T
w

w
U

T
U

T
U

t
T

T
w

w
U

t
T

T
U

t
T

T
U

t
w

w
U

t
U

t
T

T
U

t
U

sat

LA

TLA

L

sat

L

wTL

L

w

L

sat

LA

TLA

L

sat

L

wTL

L

w

L

LA

TLA

LL

wTL

L

w

LL
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∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=

∂
∂

⎟⎟
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⎜⎜
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⎛
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∂
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⎟
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⎜
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∂
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∂
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⎠
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⎜
⎝
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∂

=

∂
∂

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

+
∂
ρ∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ρ∂

∂
+

∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=
∂
∂

ρρ

ρρ

ρρ

*
,

,,

*

,,

*
,

,,

*

,,

,

,,,,

  (35) 

 
In this case our energy balance becomes of equation (26) becomes 
 

QrU
t

UV
t

UV vapvap
V

VV
L

LL −Δ−=
∂
∂

+
∂
∂ φρφρ       (26) 
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⎪
⎪
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⎥
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∂
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⎞
⎜
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⎛

∂
∂
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⎠
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⎜
⎝
⎛
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∂

⎟⎟
⎠
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⎠
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∂
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∂
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⎝
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⎟⎟
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The asterisk indicates that equation (15) must also be considered as a constraint.  The rate of 
vaporization that appears in equation (36) is given by equation (17) 
 

 ( )
vap

VV r
t

V =
∂

∂ φρ          (17) 

 
If we use the product rule and chain rule for differentiation we have 
 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

∂
φ∂

ρ+
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
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ρ∂

φ=⎟
⎠
⎞

⎜
⎝
⎛

∂
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∂
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φ=
∂
φρ∂

=
tt

T
T

V
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V
t

Vr V
V
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V
V

V
V

V
V
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vap   (37) 

 
The vapor fraction is related to the densities via equation (13), so that 
 

( ) ⎟
⎠
⎞

⎜
⎝
⎛

∂
ρ∂

−
∂
ρ∂

ρ−ρ
ρ−ρ
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⎠
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which can be written as  
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Thus the rate of vaporization is  
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This can be simplified as 
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where we used the following relations, 
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Substituting equation (42) into the energy balance of equation (36) and solving for the time 
derivative of the temperature yields 
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Our challenge now is to find the ten partial derivatives that appear in equation (45),  
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from the combined thermodynamic constraints and equation (15).   
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II.  General Thermodynamic Information 
 
In an ordinary 2-phase VLE system, we have 2 degrees of freedom.  Given, for example the 
temperature and the liquid density, we can find all of the other properties, including the vapor 
density and the composition in both phases.  Thus we are finding three unknowns.  We have 
three equations, namely mechanical equilibrium (pressures are equal) 
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and chemical equilibrium (chemical potentials of each component are equal)   
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( ) ( )VAVVBLALLB wTwT ,,,, ,,,, ρμ=ρμ        (48) 
 
Three equations and three unknowns:  no problem.  However, we are going to introduce another 
equation, which is equation (15) in which equation (13) has been used to eliminate the vapor 
fraction. 
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In this equation ρ and ρA are constants from the problem statement.  This additional equation will 
be used to determine the liquid density.  So now we have four equations and four unknowns:  no 
problem.  Now it is up to us to show how to get all the partial derivatives from equation (45). 
 We will differentiate all four of these equations with respect to temperature, so that we 
can obtain four partial derivatives. 
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Finally, we will need a thermodynamic equation of state to obtain the remaining derivatives that 
we need: 
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III.  Derivation for the multicomponent van der Waals Equation of State 
 
 At this point we need an equation of state.  We will proceed with the multicomponent van 
der Waals (vdW) equation of state (EOS), since it is the simplest EOS that allows for vapor 
liquid equilibrium (VLE). 
 The pressure for the vdW EOS for a mixture is given by  
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where Vm is a molar volume, related to our density and composition via 
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and where the composition dependence of the fluid is contained in the mixture van der Waals 
size parameter, bmix,  
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and the mixture van der Waals interaction parameter, amix,  
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The specific internal energy of the vdW fluid is  
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The derivatives that we require in (41) and (42) have been obtained in another hand-out titled, 
“The Statistical Mechanical Derivation of the van der Waals Equation of State for a 
multicomponent fluid and its associated thermodynamic properties”.  Here we summarize the 
results.  The partial derivatives in equation (42) (written in terms of molar volume and mole 
fraction) are  
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These can be evaluated at either the liquid density and composition or the vapor density and 
composition to get the correct value for either phase.  In order to convert from molar volume to 
density, use 
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In order to convert from mole fraction to mass fraction use 
 

 
BA

BA

A

A

xx
ww

dx
dw

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
         (61) 

 
Next, we need the partial derivatives in equation (41).  They can be obtained from 
 
 bxA =           (62) 
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and 
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All of the partial derivatives required in equation (56) are available in the other hand-out, “The 
Statistical Mechanical Derivation of the van der Waals Equation of State for a multicomponent 
fluid and its associated thermodynamic properties”. 
 
III.  The Solution Algorithm 
 

The big picture is that we have one nonlinear ordinary differential equation:  an energy 
balance.  We know how to solve this numerically, using for example a Runge-Kutta method.  We 
have one unknown, T(t).  In a one phase region, the energy balance reduces to  
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In the two phase region, our energy balance can be written as  
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The ordinary differential equation is properly posed.  All we need to solve it is an initial 
condition T(t=to)=To. 
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 The only remaining issue is whether we have one phase or two phases, whether we use 
the energy balance in equation (29) or (45).  This is an issue of thermodynamic stability.  In the 
single component case, we could use a simplified graphical technique to determine the stability 
of the relative systems.  If the total density of the 1-phase system fell between the densities of the 
liquid and vapor in the two phase system, then we had a two phase system.  In the binary case, 
the phase diagram has an additional dimension for composition, so this simple prescription will 
not work.  Instead, we can evaluate the Helmholtz free energy of the one-phase system and the 
two-phase system.  Whichever system has the lower free energy is present.  For a single-phase, 
the multicomponent Helmholtz free energy is  
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For two phases, this expression can be used twice using the molar volume and the compositions 
of each phase.  The total Helmholtz free energy is then a weighted average of the liquid and 
vapor free energies.  
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m AxAxA +=φ2  
 
where vx  is the total mole fraction of the vapor phase (total moles in vapor over total moles in 
system). 


