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I.  Purpose: 

The objective of this project is to develop a geometric model for the sintering process and to 
investigate the effect of geometry on sintering dynamics. In this first stage of the work, we adopt 
a standard model of sintering from the literature and examine the dynamics for two-dimensional 
systems as a function of the size ratio of the two particles being sintered.   

II.  Description of Physical System: 

The process of sintering describes the aggregration of two or more particles in order to minimize 
the free energy of the system.  Typically there is a surface energy penalty such that this 
minimization of free energy can be described as a minimization of surface area.  Koch and 
Friedlander describe the change in surface area as being driven by the difference in between the 
Area of the particles and some theoretical minimum Area, 
 

 
    )( fAtA

dt

tdA
          (1) 

 
where A  is the surface area of particles,  is the characteristic sintering rate, and fA  is the final 

surface area of particles.  In a 2-D model, A  is perimeter of particles.  
 
For the purposes of this example, we shall limit ourselves to the sintering of two particles.  
Moreover, the particles are of a simple geometry, namely squares.  Thus, there are four variables 
that completely describe the state of the two particles—the size of each square and the position 
of the center of mass of each square.  (Here we place the squares on the x-axis and neglect 
rotation, so that the center-of-mass is a one-dimensional variable.) 
 
Since we have four unknowns, we require four equations.  The sintering rate given in equation 
(1) is the first of these equations.  The second equation is the conservation of the linear 
momentum, which for two particles centered on the x-axis, is simply, 
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where 1m  and 2m  are mass of two particles respectively.  (Two particles are assumed to have the 

same density in this example). 1x  and 2x  are positions of the center of mass of two particles.  
The third equation is the conservation of mass.   
 

 0
dt

dM
          (3) 

 
where M  is the total volume of two particles.  
 
If the two particles are the same size then there are only three unknowns, the particle side length 
(for squares) or radius (for circles), and the positions of the center of mass for the two particles.  
The dynamic behavior of these three variables is completely specified by the three equations 
give above.  When the particles are not the same size, we have a fourth variable, the size of the 
second particle, which requires a fourth equation.  We have (somewhat arbitrarily) made the 
assumption that the rate of change of the volume normalized by the particle volume should be 
the same for each particle. 
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         (4) 
 
where 1V  and 2V  are volume of each particle at any given time.  In a 2-D model, 1V  and 2V  are 
areas of two particles.  This assumption is necessary to fully define the model.  Certainly other 
assumptions on the relative rate of sintering in the two systems are also possible. 
 

III.  Derivation of Tractable Forms of the Equations: 

We now have four equations and four unknowns, but the equations are written in terms of time 
derivatives for total area, A, total mass, M, volumes of each particle, V1 and V2, and the positions 
of the center of mass, x1 and x2.  However, our independent unknowns are the size of each 
particle, l1 and l2, and the positions of the center of mass of each particle, x1 and x2.  Therefore 
some reformulation of the ODEs is in order. 
 
For the discussion that follows below, we consider two-dimensional squares.  Where we use the 
term area, we mean perimeter and when we use the term volume, we mean area.  In order to 
perform the reformulation of the equation, we need to invoke geometric constraints that take the 
form of nonlinear algebraic equations.  The volume of each square is given by  
 
 2

11 lV    and  2
22 lV         (5) 
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The geometric definitions can be rendered into relationships between time derivatives through 
differentiation. 
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l
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1

1 2   and  
dt
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l
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2 2      (6) 

 
The two squares are initially placed adjacent to each other.  During sintering, it is assumed that 
the two squares maintain their shape but now they overlap.  Therefore the total volume of the 
system is  
 
 overVVVV  21          (7) 

 
where the overlap volume, overV , is a function of all four independent variables and can be 

determined by the examination of the geometry in the system, (See Figure 1.) 
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2

12
21

min 22
lxx

ll
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        (8) 

 
where overl  is the length of 

overlap and minl  is the 
smaller particle size, 

 21min ,min lll  .  The total 
mass is simply  
 
 VM   (9) 
 
Therefore the conservation 
of mass is equivalent to the 
conservation of volume in 
this system,  
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where the derivative of the 
overlap volume is obtained 
through the product rule, 
 

 
dt

dl
l

dt

dl
l

dt

dV
over

overover min
min          (11) 

l2

l2
l1

l1

l2/2

l2/2

l1/2

l1/2

lover

x1 x2
 

Figure 1.  Geometry of the overlapping squares from which 
the distance of overlap can be determined from particle sizes 
and center of mass positions. 
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We also need the area of the two particles, which can be obtained through the geometric analysis 
of the problem, 
 
  overlllA  minmax 24         (12) 

 
The time derivative of this area change is  
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The expression for the change in total area, equation (13), can be substituted into equation (1).  
The expression for the change in volumes, equation (6) and (11), can be substituted into equation 
(10) to yield 
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At this point, for simplicity we assume that 12 ll   so that 1min ll   and 2max ll  .  We also evaluate 

the derivative of the overlap length,  
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Substitution of equation (16) into equations (14) and (15) yield 
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We can eliminate 
dt

dl2  and 
dt

dx2  as follows.  Equation (4), providing sintering rate as a function 

of size is given by,  
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The conservation of momentum is  
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So that equations (17) and (18) become 
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Simplification yields, 
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We can use equation (24) to solve for 
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dl1  
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We can substitute equation (25) into equation (23) to obtain our final equation, 
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At this point, the four equations can be expressed as ODEs in terms of the four unknowns,  
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IV.  Parameter Specifications 

We can numerically evaluate this problem given the initial conditions.  The squares initially have 
sides of length 1 and 2. 
 

  101 tl   and    102 tl       (27) 
 
The center of mass of the system is at zero and the particles are just touching, which leads to  
 

  2.101 tx   and    3.002 tx      (28) 
 
We use the following parameters, the density is one, 1 , and the sintering rate is 5 . 
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V.  Numerical Solution 

We solve the method from time = 0 to 0.5 using the classical fourth-order Runge-Kutta method 
with 100 time intervals.  The plots from this solution are reproduced below 
 
As can be observed in Figure 
2, both particles grow in size 
in time.  This is possible 
because the center of mass of 
the two particles are drawing 
closer to each other, increasing 
the volume of overlap, and 
allowing both particles to 
grow, while maintaining a 
constant total particle volume.   
 
A plot of the system center of 
mass (not shown) shows that 
the center of mass remained at 
zero, confirming that 
momentum was conserved 
during the sintering process.   
 
In Figure 3, a plot of the 
volume of the system is 
shown.  Since the density is 
constant, the conservation of 
mass equates to a conservation 
of volume.  We observe that 
the total volume is conserved.  
The volume of overlap 
between the two particles 
grows monotonically in time. 
 
In Figure 4(a), we provide an 
initial configuration for the 
two particles.  Their surfaces 
are just touching.  In Figure 
4(b) and 4(c) , the 
configuration is shown at 
times of 0.25 and 0.5 
respectively.  In these 
snapshots, one can observe 
both the growth in the size of each square as well as the coming together of the two center of 
masses. 
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Figure 2.  Plots of the four independent variables, the size of 
particle 1, l1, (black) the size of particle 2, l2, (red), the center 
of mass position of particle 1, x1 (blue) and the center of mass 
position of particle 2, x2, (green) as a function of time. 
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Figure 3.  Volume as a function of time. 
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In Figure 5., we provide a series of overlaid configurations in which the blue curve depicts the 
outline of the combined object and the dotted red and black lines represent the surfaces of the 
large and small particles respectively that appear within the volume of the other particle.  Again 
it is clear that both particles are growing in size and that the center of mass of the particles is 
moving closer together. 
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Figure 5.  A series of overlaid configurations in which the blue curve depicts the outline of the 
combined object and the dotted red and black lines represent the surfaces of the large and small 
particles respectively that appear within the volume of the other particle. 
 
The codes used to implement this numerical solution are provided in Appendix I. 
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Figure 4.  Snapshots of the particle configurations at (from left to right) t = 0, 0.25 and 0.5 
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These notes are based on a project performed by Zhao Wang, an undergraduate in the 
Department of Chemical Engineering, in 2006-7 at the University of Tennessee, under the 
advising of David Keffer. 
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Appendix I.  Codes 

This handout used a main program, driver.m, and an implementation of the classical fourth order 
Runge-Kutta method, rk4n.m. 
 
I.A.  driver.m 
 
function driver 
clear all; 
close all 
% 
%  This function describes the sintering of two squares 
% 
%  This code was written by David Keffer and Zhao Wang in 2006. 
%  University of Tennessee 
global mass k Af 
% 
%  define initial sizes of squares 
%  (This code assumes that particle 2 is bigger than particle 1.) 
% 
sideo(1) = 1; 
sideo(2) = 2; 
% 
%  define volume and final surface areas 
% 
volo(1:2) = sideo(1:2).*sideo(1:2); 
volf = sum(volo(1:2)); 
sidef = sqrt(volf); 
Af = 4*sidef; 
% 
%  define density and mass 
% 
density = 1; 
k = 5; % inverse time 
mass(1:2) = density*volo(1:2); 
% 
%  determine initial location of center of mass of each square on x-axis 
% 
initial_sep=(sideo(1)+sideo(2))/2; 
q(1) = -mass(2)/(mass(1)+mass(2))*initial_sep; 
q(2) = mass(1)/(mass(1)+mass(2))*initial_sep; 
% 
%  solve ODEs describing dynamics of sintering 
% 
%  The four variables are  
%  (1) size of first square 
%  (2) size of second square 
%  (3) position of cetner of mass of first square 
%  (4) position of center of mass of second square 
% 
%  number of time steps 
n = 100; 
%  use Runge-Kutta Classical Fourth Order Method 
xo = 0; 
xf = 0.5; 
yo = [sideo(1), sideo(2), q(1),q(2)]; 
[t,y]=rk4n(n,xo,xf,yo); 
% 
%  check conservation of momentum 
% 
for i = 1:1:n+1 
    com(i) = mass(1)*y(i,3) + mass(2)*y(i,4); 



D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 

11 

end 
figure(2); 
plot(t,com,'r-'); 
xlabel('time'); 
ylabel('center of mass position'); 
% 
%  check conservation of mass 
% 
for i = 1:1:n+1 
    if (y(i,1) <= y(i,2) ) 
        miny = y(i,1); 
    else 
        miny = y(i,2); 
    end 
    dis = sqrt( (y(i,3)-y(i,4))^2 ); 
    fac = y(i,3)-y(i,4)/dis; 
    v_overlap(i) = [y(i,1)/2 + y(i,2)/2 - dis]*min(y(i,1),y(i,2)); 
    v(i) = y(i,1)^2 + y(i,2)^2 - v_overlap(i); 
end 
figure(3); 
plot(t,v,'k-o'); 
hold on; 
plot(t,v_overlap,'r-'); 
hold off; 
xlabel('time'); 
ylabel('volume'); 
legend('total volume','overlap volume'); 
% 
%  make a movie with 2 rectangles 
% 
for i = 1:1:n+1 
    ym1(1,i) = y(i,1)*0.5; 
    ym1(2,i) = ym1(1,i); 
    ym1(3,i) = -ym1(1,i); 
    ym1(4,i) = ym1(3,i); 
    ym1(5,i) = ym1(1,i); 
    xm1(1,i) = y(i,3) - y(i,1)*0.5; 
    xm1(2,i) = y(i,3) + y(i,1)*0.5; 
    xm1(3,i) = xm1(2,i); 
    xm1(4,i) = xm1(1,i); 
    xm1(5,i) = xm1(1,i); 
     
    ym2(1,i) = y(i,2)*0.5; 
    ym2(2,i) = ym2(1,i); 
    ym2(3,i) = -ym2(1,i); 
    ym2(4,i) = ym2(3,i); 
    ym2(5,i) = ym2(1,i); 
    xm2(1,i) = y(i,4) - y(i,2)*0.5; 
    xm2(2,i) = y(i,4) + y(i,2)*0.5; 
    xm2(3,i) = xm2(2,i); 
    xm2(4,i) = xm2(1,i); 
    xm2(5,i) = xm2(1,i); 
end 
figure(4); 
for i = 1:1:n+1 
%for i = 1:1:1 
    plot(xm1(:,i),ym1(:,i),'k-o'); 
    hold on; 
    plot(xm2(:,i),ym2(:,i),'r-s'); 
    hold off; 
    axis([-2 2 -2 2]); 
   pause(0.1); 
end 
% 
%  make a movie with total outline  
% 
for i = 1:1:n+1 
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    ym1(1,i) = y(i,1)*0.5; 
    ym1(2,i) = ym1(1,i); 
    ym1(3,i) = -ym1(1,i); 
    ym1(4,i) = ym1(3,i); 
    ym1(5,i) = ym1(1,i); 
    xm1(1,i) = y(i,3) - y(i,1)*0.5; 
    xm1(2,i) = y(i,3) + y(i,1)*0.5; 
    xm1(3,i) = xm1(2,i); 
    xm1(4,i) = xm1(1,i); 
    xm1(5,i) = xm1(1,i); 
     
    ym2(1,i) = y(i,2)*0.5; 
    ym2(2,i) = ym2(1,i); 
    ym2(3,i) = -ym2(1,i); 
    ym2(4,i) = ym2(3,i); 
    ym2(5,i) = ym2(1,i); 
    xm2(1,i) = y(i,4) - y(i,2)*0.5; 
    xm2(2,i) = y(i,4) + y(i,2)*0.5; 
    xm2(3,i) = xm2(2,i); 
    xm2(4,i) = xm2(1,i); 
    xm2(5,i) = xm2(1,i); 
     
    xmt(1,i) = xm1(1,i); 
    ymt(1,i) = ym1(1,i); 
    xmt(2,i) = xm2(1,i); 
    ymt(2,i) = ymt(1,i); 
    xmt(3,i) = xmt(2,i); 
    ymt(3,i) = ym2(1,i); 
    xmt(4,i) = xm2(2,i); 
    ymt(4,i) = ymt(3,i); 
    xmt(5,i) = xmt(4,i); 
    ymt(5,i) = ym2(3,i);   
    xmt(6,i) = xm2(4,i); 
    ymt(6,i) = ymt(5,i);  
    xmt(7,i) = xmt(6,i); 
    ymt(7,i) = ym1(3,i);  
    xmt(8,i) = xm1(1,i); 
    ymt(8,i) = ymt(7,i);  
    xmt(9,i) = xm1(1,i); 
    ymt(9,i) = ym1(1,i); 
end 
figure(5); 
nskip=10; 
for i = 1:nskip:n+1 
    plot(xm1(:,i),ym1(:,i),'k:'); 
    hold on; 
    plot(xm2(:,i),ym2(:,i),'r:'); 
    hold on; 
    plot(xmt(:,i),ymt(:,i),'b-'); 
    hold on; 
    axis([-2 2 -2 2]); 
   pause(0.1); 
end 
hold off; 
xlabel('x'); 
ylabel('y'); 
% 
%  make a snapshot with several total outline  
% 
figure(6); 
nskip=20; 
for i = 1:nskip:n+1 
    plot(xmt(:,i),ymt(:,i),'b-'); 
    hold on; 
    axis([-2 2 -2 2]); 
end 
hold off; 
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xlabel('x'); 
ylabel('y'); 
  
 
I.B.  rk4n.m 
 
function [x,y]=rk4n(n,xo,xf,yo); 
% 
%  [x,y]=rk4n(n,xo,xf,yo); 
% 
% This script will solve n first-order ODEs using  
% the classical fourth-order Runge-Kutta method. 
% 
% ODE:  dy_i/dx = f_i(x,y_j) 
% 
% IC:   y_i(xo) = yo_i 
% 
% inputs: 
% n = number of intervals, scalar 
% x0 = value of x at initial condition, scalar 
% xf = final value of x, scalar 
% y0 = value of y at initial condition, vector of length m (m = # of ODEs) 
% f_i(x) entered in the function "funkeval" at the bottom of this file 
% 
% outputs: 
%  
% x = vector of x values, nx1 vector 
% y = matrix of y values, nxm vector 
% a graph of y vs x 
% a file, 'rk4n_out.txt' containing tabulated data of x and y 
% 
% example usage: 
% 
%  [x,y]=rk4n(10,0,2,[1,0,2]); 
% 
% Author:  David Keffer  
% original date: October 23, 1998 
% last modified date: April 2, 2013 
% 
  
% 
% define discretization and x vector 
% 
dx = (xf-xo)/n; 
x = zeros(n+1,1); 
for i = 1:1:n+1 
   x(i) = xo + (i-1)*dx; 
end 
  
% 
% determine number of ODEs 
% 
m=max(size(yo)); 
  
% 
% perform Runge-Kutta steps 
% 
y = zeros(n+1,m); 
y(1,1:m) = yo(1:m); 
dydx = zeros(1,m); 
ytemp = zeros(1,m); 
k1 = zeros(1,m); 
k2 = zeros(1,m); 
k3 = zeros(1,m); 
k4 = zeros(1,m); 
for i =  1:1:n 
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   x1 = x(i); 
   ytemp(1:m) = y(i,1:m); 
   k1(1:m) = funkeval(x1,ytemp); 
   x2 = x(i) + 0.5*dx; 
   ytemp(1:m) = y(i,1:m) + 0.5*dx*k1(1:m); 
   k2(1:m) = funkeval(x2,ytemp); 
   x3 = x(i) + 0.5*dx; 
   ytemp(1:m) = y(i,1:m) + 0.5*dx*k2(1:m); 
   k3(1:m) = funkeval(x3,ytemp); 
   x4 = x(i) + dx; 
   ytemp(1:m) = y(i,1:m) + dx*k3(1:m); 
   k4(1:m) = funkeval(x4,ytemp); 
   dydx(1:m) = 1.0/6.0*(k1(1:m) + 2.0*k2(1:m) + 2.0*k3(1:m) + k4(1:m)); 
   y(i+1,1:m) = y(i,1:m) + dx*dydx(1:m); 
end 
  
% 
%  plot 
% 
close all; 
iplot = 1; 
if (iplot == 1) 
   for i = 1:1:m 
      color_index = get_plot_color(i); 
      plot (x(:),y(:,i),color_index);  
      hold on; 
   end 
   hold off; 
   xlabel( 'x' );  
   ylabel ( 'y' ); 
   legend (int2str([1:m]')); 
end 
  
% 
%  write result to file 'rk4n_out.txt' 
% 
fid = fopen('rk4n_out.txt','w'); 
fprintf(fid,'x  y(1) ... y(m) \n'); 
for i = 1:1:n+1 
   fprintf(fid,'%23.15e ', x(i)); 
   for j = 1:1:m 
      fprintf(fid,'%23.15e ', y(i,j)); 
   end 
   fprintf(fid,' \n'); 
end 
fclose(fid); 
  
% 
% enter ODE in this function 
% 
function dydt = funkeval(t,y); 
% 
%  The sintering of two squares 
% 
global mass k Af 
% 
%  translate function inputs to sintering variables 
% 
side1 = y(1); 
side2 = y(2); 
x1 = y(3); 
x2 = y(4); 
% 
%  determine volumes and areas 
% 
V1 = side1*side1; 
V2 = side2*side2; 
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sidemin = min(side1,side2); 
sidemax = max(side1,side2); 
dis = x2 - x1; 
dissr = sqrt((dis)^2); 
sideover = side1/2 + side2/2 - dissr; 
A = 4*sidemax + 2*(sidemin-sideover); 
Vover = sideover*sidemin; 
V = V1 + V2 - Vover; 
% 
%  thermodynamically driven sintering rate law 
% 
numerator1 = side1*dis/dissr*(1+mass(1)/mass(2)); 
denominator1 = 3/2*side1 - 1/2*side2 + 2*side2^2/side1 - sideover; 
fac1 = 3*side2/side1 + 1; 
term1 = fac1*numerator1/denominator1; 
term2 = -2*dis/dissr*(1+mass(1)/mass(2)); 
denominator2 = term1 + term2; 
numerator2 = -k*(A - Af); 
dx1dt = numerator2/denominator2; 
% 
%  conservation of mass 
% 
dside1dt = numerator1/denominator1*dx1dt; 
% 
%  relative sintering ratios 
% 
dside2dt = side2/side1*dside1dt; 
% 
%  conservation of momentum 
% 
dx2dt = -mass(1)/mass(2)*dx1dt; 
% 
%  copy the derivatives to the out-going vector 
% 
dydt(1) = dside1dt; 
dydt(2) = dside2dt; 
dydt(3) = dx1dt; 
dydt(4) = dx2dt; 
  
% 
% this little function sets colors for curves in plot 
% 
function color_index = get_plot_color(i); 
if (i == 1)  
   color_index = 'k-'; 
elseif (i == 2) 
   color_index = 'r-'; 
elseif (i == 3) 
   color_index = 'b-'; 
elseif (i == 4) 
   color_index = 'g-'; 
elseif (i == 5) 
   color_index = 'm-'; 
elseif (i == 6)  
   color_index = 'k:'; 
elseif (i == 7) 
   color_index = 'r:'; 
elseif (i == 8) 
   color_index = 'b:'; 
elseif (i == 9) 
   color_index = 'g:'; 
elseif (i == 10) 
   color_index = 'm:'; 
else 
   color_index = 'k-'; 
end 


