D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

Numerical Methods for Solving a System of Nonlinear Parabolic PDEs
with Two Spatial Dimensions

David Keffer
Department of Materials Science & Engineering
University of Tennessee, Knoxville
date begun: February 11, 2015
last revised: February 19, 2015

Table of Contents

Lo FOMMIUIALION. ... ettt bbb e bt st e be et e e s e e sbeenbeeneenreas 1
1. Heat Transfer in a Plate with Radiative Heat LOSS..........ccccuoiiiiieniesienece e 3

I1LA. Dirichlet Boundary CONGITIONS........ccuoiiiiiiiiiieiesie s 3

11.B. Dirichlet & Neumann Boundary CONItIONSccceieeriiiriieiienie e 10
I1l. Heat Transfer in a Cylindrical Rod with Radiative and Convective Heat LOSS..................... 12
IV. Simultaneous Solution of a System of parabolic PDEs in two spatial dimensions................ 18
Appendix I. parapde _N_anyBC _ 20.Mcccoiiiiiiiiiie e 24
Appendix Il. parapde_n_anyBC _2d_CYLM ..o 38
I. Formulation

Consider a set of coupled nonlinear parabolic PDEs of the general form,

%M) =K (x,y,t, T} VT LT (1)

where the RHS of each PDE is potentially a function of all variables, their gradients and their
Laplacians. Systems of linear PDEs are certainly a subset of this more general form. Single
PDEs, either linear or nonlinear, are also certainly a subset of this more general form.

We have already derived and demonstrated a second-order method for a single nonlinear PDE,
which is an analog of Heun’s method for ODEs. That method converted a single PDE into a
system of ODEs, where there was an ODE describing the temporal evolution of the dependent
variable at each node. We have already likewise converted a system of nonlinear PDEs into a
system of ODEs, where there is an ODE describing the temporal evolution of each dependent
variable at each node for a system with one spatial dimension. We now extend this process to a
system with two spatial dimensions. There is little conceptual development required for this
extentions. Rather, there is only the need for methodical bookkeeping.

A comment on notation: we will write T (t., ., y,) asT“)ij,k , Where j superscripts designate

jroio
temporal increments, i subscripts designate spatial increments along the first spatial dimension, k
subscripts designate spatial increments along the second spatial dimension, and ¢ superscripts
inside parentheses designate different dependent variables.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

To recap what we did in the single parabolic PDE case, we first discretized time and space.
Second we used the second order Heun’s method to solve the time component of the PDE like an
ODE.

T (()ij‘tl -7 (()ij,k +%[K (/f)ij‘?zl " K(/)ij‘k j| (2)

where K @}, is the time derivative of T},

KO =KDk, y, t, T {vT i} {veri]) @3)
The braces in equation (3) stand for the complete set over both positions i,k and function (7).
The second function in equation (2) is given by K(x;,y,,t;.,, T, + AtK!)

KW =K® (xi Vot AT vT i {ver ey) (4)
where the temperature is approximated with an Euler method

TAH = T+ AtKY, (5)

Note: this temperature is used not only for the explicit temperatures but is also used in the finite
difference formulae to obtain the first and second spatial partial derivatives.

The boundary conditions are handled the same way as in the single non-linear parabolic PDE
algorithm.

At the end of this file, an implementation of this algorithm is provided. The code,
parapde_n_anyBC_2d.m, is a general code. This code is also available for download on the
course website.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

Il. Heat Transfer in a Plate with Radiative Heat Loss

I1.A. Dirichlet Boundary Conditions

Consider heat transfer in a square plate. Our intention is to describe the evolution of the
temperature in this space subject to a set of initial conditions and boundary conditions. In this
case, we focus exclusively on the energy balance, so we only have one partial differential
equation. However, we intend to describe the evolution of the temperature in two spatial
dimensions.

The two-dimensional heat equation can describe heat transfer in a material with both heat
conduction and radiative heat loss.

2 2
aq_ k(T ST s08 (e r4)
o, o oyt),

The radiative heat loss term involves temperature to the fourth power and is therefore nonlinear.
Consider a flat Cu plate, square in shape with a side length of 1.0 m and a thickness of 0.01 m,
which is initially at T(x, y,t =0) =1000 K. The boundary conditions for this plate are given as

follows

T(x=X,,Y,t)=800K
T(x=X;,Y,t)=1000K
T(x,y=yY,,1t)=800K
T(x,y =Y,,t)=1000K

In this problem, we will employ the following units and numerical values for parameters.
e temperature in the material T [K]

surrounding temperature T, = 300 [K]

spatial position along material x and y [m]

thermal conductivity k =401 [J/K/m/s] (for Cu)

mass density p = 8960 [kg/m®] (for Cu)

heat capacity C, =384.6 [J/kg/K] (for Cu)

Stefan—-Boltzmann constant o = 5.670373x10° [J/s/m%/K*]
e gray body permittivity & = 0.15 (for dull Cu)

e surface area to volume ratio S = EZZW =100 [m™] (for the top surface of a square plate

with side ¢/ =1 m and thickness w =0.01 m)

This is a single non-linear parabolic PDE with two spatial dimensions and four Dirichlet
boundary conditions. To solve this problem, I will use the code parapde_n_anyBC_2d .m.

I modified the input functions in parapde_n_anyBC_2d . m as follows.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

| set the number of PDEs to one.
neq = 1;

I assigned the appropriate type of boundary conditions.

BC(1,1,1) = "D";
BC(1,2,1) = "D";
BC(2,1,1) = "D";
BC(2,2,1) = "D";

| set the final time to 10,000 seconds and chose the time interval to be 5 seconds, so | had 2000
temporal intervals.

% discretize time

to = 0;
tF = 1.0e+4;
dt = 5.0e+0;

I defined the geometry and resolution of both spatial dimensions. The plate spans from 0 to 1 m.
The resolution was 0.05 m, so | had 20 intervals in each dimension, or 400 area elements.

% discretize space

X0 = 0;

xF = 1.0;

dx = 5.0e-2;
yo = 0O;

yf = 1.0;

dy = 5.0e-2;

| defined the PDE in the following function.

%

% Function defining PDE

%

function dTdt_out = pdefunk(x,y,t,Told,dTdx,dTdy,d2Tdx2,d2Tdy2,d2Tdxdy,keq) ;
%

% physical properties

%

% rho = density [kg/m"3]

rho = 8960.0;

% Cp = heat capacity [J/kg/K]

Cp = 384.6;
% k = thermal conductivity [W/m/K]
k = 401.0;

% alpha = thermal diffusivity

alpha = k/rho/Cp;

% Stefan-Boltzmann constant [J/s/m"2/K"M]
sigma = 5.670373e-8;

% gray body permittivity

eps = 0.15; % (for dull Cu)

% plate geometry

side = 1.0; % [m]

thickness = 0.01; % [m]

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

area = side*side;

volume = area*thickness;

s = area/volume; % 1/m

% surrounding temperature [K]

Tsurround = 300.0;

% PDE

dTdt_out = alpha*(d2Tdx2(1)+d2Tdy2(1)) - eps*sigma*s/(rho*Cp)*(Told(1)"4 -
Tsurround™4);

I defined the IC and BCs in the functions below. Remember the initial condition provides the
initial temperature. The code accepts boundary conditions in the form for an x boundary

oT
Agc (y’ t)T +Dge (y't)& +Ceqc (y:t) =0

or analogously for a y boundary
e (% T + by (x,t)%+ o (X,1)=0

so three functions must be entered for each of the four boundaries. For Dirichlet BCs, az. =1,
bge =0,and c,c =-T where T, .4 IS the boundary temperature.

bound !

%
% Function defining initial condition
%

function ic_out = icfunk(x,y,keq);
ic(1) = 1000.0;
ic_out = ic(keq);

%
% Functions defining initial boundary condition in Ffirst spatial dimension
%

function fout = aBCxo(y,t,k);
f(1) = 1;
fout = F(K);

function fout = bBCxo(y,t,k);

f(1) = 0;

fout = F(k);

function fout = cBCxo(y,t,k);
(1) = -800;

fout = F(K);

%
% Functions defining final boundary condition in first spatial dimension
%

function fout = aBCxf(y,t,k);

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

f(1) = 1;

fout = f(k);

function fout = bBCxf(y,t,k);
f(1) = 0;

fout = f(k);

function fout = cBCxf(y,t,k);

f(1) = -1000;
fout = f(k);

%
% Functions defining initial boundary condition in second spatial dimension
%

function fout = aBCyo(X,t,k);
(1) 1;
fout (K);

function fout = bBCyo(x,t,k);

(1) = 0;

fout = f(Kk);

function fout = cBCyo(x,t,k);
(1) = -800;

fout = F(K);

%
% Functions defining final boundary condition in second spatial dimension
%

function fout = aBCyf(x,t,k);
f() = 1;

fout = F(K);

function fout = bBCyf(x,t,k);
f(1) = 0;

fout = (k)

function fout = cBCyf(x,t,k);

i
f(1) = -1000;
fout = ;

At the command line prompt, | typed

[xvec,yvec,tvec,Tmat] = parapde_n_anyBC 2d exampleOl;

This command generated a movie. Several frames of the movie are shown in Figure 1 (without
radiative heat loss, i.e. | set eps = 0.0) and in Figure 2 (with radiative heat loss, i.e. | left eps =
0.15).

In any case, to find the temperature at any point in space and time, | simply need the three indices
for the matrix, Tmat, which correspond to the x, y and z values of interest. For example, to find
the value of the temperature at x =0.5m, y=0.5mand t = 10,000 s, | confirmed that | knew the
correct spatial and temporal indices.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

>> xvec(12)

ans = 0.5000
>> yvec(12)

ans = 0.5000
>> tvec(2001)

ans = 10000

With these indices, we find that
>> Tmat(12,12,2001)
ans = 900.0000

Therefore the temperature at x =0.5m, y =0.5mand t = 10,000 s, is 900 K for the case without
radiative heat loss. This is the steady-state (infinite time) solution. From the movie, we would
have seen almost no change in the profile after 4,000 s.

In the case where there was radiative heat loss, we find that
>> Tmat(12,12,201)
ans = 835.6018

Therefore the temperature at x =0.5m, y=0.5mand t = 10,000 s, is 836 K for the case with
radiative heat loss. This is very near the steady-state (infinite time) solution.

If you were interested in the temporal evolution of a particular point in the plate, such
information is contained in the solution matrix, Tmat.

For example, the following set of commands, yields the plot shown in Figure 3. We extract all
the temperature of the central point at all times and store it in a temporary vector for ease in
plotting.

>> temp(1:2001) = Tmat(12,12,1:2001);
>> plot(tvec,temp, "k-");

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

Figure 1. Transient behavior of the temperature in a plate without radiative heat loss.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

- [
M ||
E;’ 9:0' “““‘““ “0 ; ":""’:’

secon d spatial dimension 0 o ol i ion secon d spatial dimension
first spatial dimension

first spatial dimension

Figure 2. Transient behavior of the temperature in a plate with radiative heat loss.

980

960

940

Figure 3. Transient behavior of the temperature at x = 0.5 m, y = 0.5 m with radiative heat loss.
The y-axis is temperature (K) and the x-axis is time (s).

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

11.B. Dirichlet & Neumann Boundary Conditions

Let’s rework the previous problem (including radiation loss) where two sides of the plate are
insulated, resulting in no heat loss, a no flux boundary condition. The boundary conditions are

al g

OX |y,
T(x=X;,Y,t)=1000K
al _y

ay Yo

T(x,y=Y,,t)=1000K

Given the required format for BC input, for Neumann BCs, az. =0, by, =1, and

Cge =—VT where, in this case, the boundary gradient is zero.

bound 1
The changes to the code involve the following steps.

I assigned the appropriate type of boundary conditions.

BC(1,1,1) = "N";
BC(1,2,1) = "D";
BC(2,1,1) = "N";
BC(2,2,1) = "D";

I accordingly changed two of the boundary conditions.

%
% Functions defining initial boundary condition in Ffirst spatial dimension
%

function fout = aBCxo(y,t,k);
(1) = 0;
fout (K);

function fout = bBCxo(y,t,k);

f(1) = 1;

fout = F(k);

function fout = cBCxo(y,t,k);
(1) = 0;

fout = F(K);

%
% Functions defining initial boundary condition in second spatial dimension
%

function fout = aBCyo(x,t,k);
fQ» 0;
fout (K);

10

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

function fout = bBCyo(x,t,k);

f(1) = 1;

fout = f(Kk);

function fout = cBCyo(x,t,k);
f(1) = 0;

fout = F(K);

At the command line prompt, | typed

[xvec,yvec,tvec,Tmat] = parapde_n_anyBC 2d exampleOl;

This command generated a movie. Several frames of the movie are shown in Figure 4. The
midpoint temperature at 10,000 s is 823 K.

time =10 sec time =100 sec

1000

995

variable

990 4

985 .\ ‘\

dependent variable

dependent

980 .-

0.6
0.4

second spatial dimension 0 0 first spatial dimension second spatial dimension 0 o

time =1000 sec time =10000 sec

k8%

|
2 NSRS S K XA
i] NSRS

750,

second spatial dimension second spatial dimension first spatial dimension

first spatial dimension

Figure 4. Transient behavior of the temperature in a plate with radiative heat loss and two
insulated boundary conditions.

11

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

I11. Heat Transfer in a Cylindrical Rod with Radiative and Convective Heat Loss

Let’s solve the same heat transfer problem as above in a cylindrical rod of finite length.
Again, our intention is to describe the evolution of the temperature in this object subject to a set
of initial conditions and boundary conditions. In this case, we focus exclusively on the energy
balance, so we only have one partial differential equation. However, we intend to describe the
evolution of the temperature in two spatial dimensions, an axial and radial direction. We assume
there is no variation in the angular dimension.

The two-dimensional heat equation can describe heat transfer in a material with both heat
conduction and radiative heat loss. In cylindrical coordinates we have an additional term in the
scalar Laplacian.

2 2
a_TzL 812-4_1@4_@12- _ﬁ(TL‘_T;‘)
ot pC,\or ror oz <,

The radiative heat loss term involves temperature to the fourth power and is therefore nonlinear.
Consider a cylindrical Cu rod, with an axial length of 1.0 m and a radius of 0.01 m, which is
initially at T (x,y,t =0) =1000 K. The boundary conditions for this rod are given as follows. In
the axial dimension, finite temperatures are maintained. In the radial direction, there is the
standard symmetry boundary at the interior (r=0) boundary condition. At the radius of the
cylinder, the rod is poorly insulated, resulting in convective heat loss.

T(z=12,,r,t)=800K
T(z=1z,,r,t)=1000K

Il _y

or|,

q:_k(Z_T :h[T(Z,r:rf1t)_Tsurr]
s

This last boundary condition indicates that the heat flux at any point on the surface of the rod is
equal in magnitude to a convective heat loss to the surroundings. The variable h is an empirical
heat transfer coefficient with units of W/m?/K. Thus, this BC can be written in a form
compatible with the code.

hT(z,r=r, ,t)+ka—T -hT
or

It
Remember the initial condition provides the initial temperature. The code accepts boundary
conditions in the form for an x boundary

=0

surr

oT
Agc (y’ t)T + bBC (y,t)& + Cge (Y:t) =0

12

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

So three functions must be entered for each of the four boundaries. For Dirichlet BCs, a,. =1,
bge =0, and ¢, =T, Where T, IS the boundary temperature. For Neumann no flux
BCs, a,c =0, bge =1,and ¢, =-VT For this last boundary, a;. =h, b,. =k, and
Cge =—NT

bound *

surr *

I assigned the appropriate type of boundary conditions.

BC(1,1,1) = "D";
BC(1,2,1) = "D";
BC(2,1,1) = "N";
BC(2,2,1) = "N";

| set the final time to 10,000 seconds and chose the time interval to be 5 seconds, so | had 2000
temporal intervals. You will note that | used a much smaller timestep here, which will be due to
the finer resolution in the radial dimension.

% discretize time

to = 0;
tfF = 1.0e+3;
dt = 1.0e-1;

I defined the geometry and resolution of both spatial dimensions. The rod runs from 0 to 1 m.
The resolution in the axial dimension was 0.05 m, so I had 20 intervals in the axial dimension.
The rod has a radius of 0.1 m. The resolution in the radial direction was 0.01, so | had 10
intervals in the radial dimension, or 200 area elements.

Note: There is a trick here when solving in the radial dimension! You make your first radial
position (yo) set to the discretization size (dy) rather than 0. This allows the imaginary node
required for the Neumann boundary condition to exist at r = 0.

% discretize space

X0 = 0;

xF = 1.0;

dx = 5.0e-2;
dy = 1.0e-2;
yo = dy;

yF = 0.1;

I defined the PDE in the following function.

function dTdt _out = pdefunk(z,r,t,Told,dTdz,dTdr,d2Tdz2,d2Tdr2,d2Tdzdr,keq);
%

% physical properties

%

% rho = density [kg/m"3]

rho = 8960.0;

% Cp = heat capacity [J/kg/K]

Cp = 384.6;

% k = thermal conductivity [W/m/K]

13

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

k = 401.0;

% alpha = thermal diffusivity

alpha = k/rho/Cp;

% Stefan-Boltzmann constant [J/s/m"2/K"™M4]
sigma = 5.670373e-8;

% gray body permittivity

eps = 0.15; % (for dull Cu)

%eps = 0.0; % no radiative loss

% plate geometry

length = 1.0; % [m]

radius = 0.1; % [m]

pi = 2.0*asin(1.0);

area = 2*pi*radius*length;

volume = pi*radius*radius*length;

s = area/volume; % 1/m

% surrounding temperature [K]

Tsurround = 300.0;

%

% PDE

%

dTdt_out = alpha*(d2Tdz2(1) + 1.0/r*dTdr(1) + d2Tdr2(1)) -
eps*sigma*s/(rho*Cp)*(Told(1)™4 - Tsurround”™4);

| defined the IC and BCs in the functions below.

%
% function defining initial condition
%

function ic_out = icfunk(x,y,keq);
ic(1) = 1000.0;
ic_out = ic(keq);

%
% fFunctions defining initial boundary condition in first spatial dimension
%

function fout = aBCxo(y,t,k);

f(1) = 1;

fout = f(k);

function fout = bBCxo(y,t,k);
(1) = 0;

fout = F(K);

function fout = cBCxo(y,t,k);
(1) = -800;

fout = F(k);

%
% Functions defining final boundary condition in first spatial dimension
%

function fout = aBCxf(y,t,k);
(1) 1;
fout = f(Kk);

function fout

bBCxF(y,t,k);

14

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

fQ»
fout

0;
LQF

function fout = cBCxf(y,t,k);
(1) -1000;
fout = f(Kk);

%
% functions defining initial boundary condition in second spatial dimension
%

function fout = aBCyo(x,t,k);

f(1) = 0;

fout = f(Kk);

function fout = bBCyo(x,t,k);
f() = 1;

fout = F(K);

function fout = cBCyo(x,t,k);
f(1) = 0;

fout = f(k);

%
% Functions defining final boundary condition in second spatial dimension
%

function fout = aBCyf(x,t,k);
% heat transfer coefficient In [W/m"2/K]

h = 4_0e+1;
f(1) = h;
fout = F(k);

function fout = bBCyf(x,t,k);
% kc = thermal conductivity [W/m/K]

kc = 401.0;
f(1) = kc;
fout = f(k);

function fout = cBCyf(x,t,k);

% heat transfer coefficient In [W/m"2/K]
h = 4_0e+1;

% surrounding temperature [K]

Tsurround = 300.0;

(1) -h*Tsurround;

fout = f(k);

At the command line prompt, | typed

[xvec,yvec,tvec,Tmat] = parapde_n_anyBC 2d_cyl;

This command generated a movie. Several frames of the movie are shown in Figure 5. Initially
the rod is entirely at 1000 K. It cools axially first, with the temperature of one end of the rod
dropping down to 800 K. It also cools due to radial heat loss to the surroundings, which is why
we see that eventually the temperature in the rod can drop below both the axial boundary
temperatures.

15

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

The temporal evolution of the temperature at several points is shown in Figure 6. The two
figures in Figure 6 were generated with the following script, after the pde was solved.

figure(2);

temp(1:10001) = Tmat(12,1,1:10001);
plot(tvec,temp, "k-");

hold on;

temp(1:10001) = Tmat(12,11,1:10001);
plot(tvec,temp,“"r-");

hold off;

xlabel ("time (s)°)
ylabel (" temperature (K)");
legend("z=0.5, r=0.0","z=0.5, r=0.1%);

figure(3);

temp((1:10001) = Tmat(3,6,1:10001);
plot(tvec,temp, "k-");

hold on;

temp((1:10001) = Tmat(21,6,1:10001);
plot(tvec,temp, "r-");

hold off;

xlabel ("time (s)7)

ylabel ("temperature (K)");

legend("z=0.05, r=0.05","z=0.95, r=0.05%);

The figure on the left in Figure 6 shows that there is only a small difference between the
temperature evolution at the interior of the cylinder and at its difference. The figure on the left
shows that there is a large difference between the temperature near different ends of the rod.
When there is a large disparity in dimensions, people often assume that there is no significant
temperature gradient in the radial direction and then solve the problem with only one spatial
dimension! This is the ultimate resolution to dealing with problems of having to discretize
different dimensions to different degrees.

16

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

time =1 sec

dependent variable

0.06

0.04 0.4

second spatial dimension

first spatial dimension

time =100 sec

1000 -

©
a
=}

dependent variable

0.6

0.04 0.4

second spatial dimension first spatial dimension

time =9.9 sec

dependent variable

0.06

0.04] 0.4

second spatial dimension first spatial dimension

time =1000 sec

dependent variable

0.06

0.04 ‘ 0.4

second spatial dimension 0 first spatial dimension

Figure 5. Transient behavior of the temperature in a rod with radiative heat loss.

1000

980

960

940

920

900

temperature (K)

880

860

840

820

800

! ! ! ! !
500 600 700 800 900 1000
time (s)

1 1 1 1
0 100 200 300 400

1000

temperature (K)

750
0

! ! ! ! !
500 600 700 800 900 1000
time (s)

1 1 1 1
100 200 300 400

Figure 6. Transient behavior of the temperature at selected points in the rod with radiative heat
loss from the interior and convective heat loss at the external radial boundary. The y-axis is
temperature (K) and the x-axis is time (s). The first figure shows that there is only a small

difference between the temperature evolution

at the interior of the cylinder and at its difference.

The second figure shows that there is a large difference between the temperature near different

ends of the rod.

17

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

IV. Simultaneous Solution of a System of parabolic PDEs in two spatial dimensions

In the examples that we looked at above, there was only one PDE. Often we have more than
one PDE. It could be a PDE corresponding to material balances for each component and to the
energy balance. Here, we will look at a “two temperature model”, which describes ionic
bombardment of a material, in which there are different temperatures for the electrons and the
nuclei of atoms, resulting in two energy balances, one yielding the temperature of the electrons
and the other the temperature of the nuclei. We will examine this phenomenon in the two
dimensional plate geometry.

The two-dimensional heat equation can describe heat transfer in a material with both heat
conduction and radiative heat loss. The first equation provides a description of the electron
energy. There are the traditional accumulation and diffusion terms. There is an electron-phonon
coupling factor, g, which transfers energy from the electrons to the phonons (nuclei). There is
also energy input to the electrons from the ion beam, A.

2 2
Me_y |9 Tz 2 T2 —g(T,-T,)+A
ot OX oy
The energy balance for the nuclear temperature has a similar form. The sign of the electron-

phonon coupling is reversed, since energy lost by the electrons is gained by the neutrons. Also,
in this example, the incoming beam is at an energy such that it only interacts with electrons.

oT, 82Tn 82Tn
—a, N
ot ox* oy®

J+ 9(T.-T,)

These equations happen to be linear, but the tools that we are using, are suitable for both linear
and nonlinear PDEs, so this does not present a problem. Consider a flat Cu plate, square in shape
with a side length of 10.0 nm, which is initially at T, (x, y,t =0) =300 K and

T,(x,y,t =0)=300. The boundary conditions for this plate are given as follows

T.(Xx=X,,Yy,t) =300K T, (x=x,,Y,t)=300K
T.(X=X;,Y,t) =300K T, (x=X;,y,t)=300K
T.(X,y=yY,,t)=300K T.(x,y=y,,t)=300K
T.(X, y=y,,t)=300K T.(x,y=y,,t)=300K

In this problem, we will employ the following units and numerical values for parameters.
e temperature in the material T [K]
e spatial position along material x and y [nm]
e thermal conductivity k =401 [J/K/m/s] (for Cu)
e mass density p = 8960 [kg/m®] (for Cu)

18

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

heat capacity C, =384.6 [J/kg/K] (for Cu)

nuclear thermal mobility ¢, :L-lO*5 [nm?/fs]
p
electron mobility , =10a, [nm?/fs]

electron-phonon coupling factor g =0.001 [1/fs]

2
L exp[— ' J[aJ/fs/nm3]

o2 202

energy input due to beam A=

where A is a Gaussian distribution of energy, centered at (x, y)=(5,5) (the middle of the plate)

and where r is the distance from the center and o is the standard deviation of the distribution, set
to 1 nm. The ion beam is a pulse that lasts only the first 200.0 fs. Note the nuclear thermal
mobility has been artificially slowed down by five orders of magnitude for the purposes of the
example problem.

I modified the file as follows. First, | set the number of equations to 2.

neq = 2;

I set all the boundary conditions to Dirichlet.

BC(1,1,1) = "D";
BC(1,2,1) = "D";
BC(2,1,1) = "D";
BC(2,2,1) = "D";
BC(1,1,2) = "D";
BC(1,2,2) = "D°;
BC(2,1,2) = "D";
BC(2,2,2) = "D";

I discretized time and space.

% discretize time

to = 0;

tf = 1.0e+3;

dt = 1.0e+1;

% discretize the first spatial dimension
xo0 = 0;

xf = 10.0;

dx = 5.0e-1;

% discretize the second spatial dimension
0;

10.0;

5.0e-1;

<
=h
Inun

| entered the PDEs.

function dTdt_out = pdefunk(x,y,t,Told,dTdx,dTdy,d2Tdx2,d2Tdy2,d2Tdxdy,keq);
% rho = density [kg/m"3]

19

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

rho = 8960.0;
% Cp = heat capacity [J/kg/K]

Cp = 384.6;
% k = thermal conductivity [W/m/K]
k = 401.0;

% alpha = thermal diffusivity [m"2/s]
alpha_n = k/rho/Cp;

alpha_n = alpha_n*1.0e+0; % [nm"2/fs]
% electron thermal diffusivity
alpha_e = 10.0*alpha_n; % [nm"2/fs]

g = 1.0e-3;
Xc = 5.0;
yc = 5.0;
rcut = 2.0;

rcut2 = rcut*rcut;
tcut = 200.0;
r2 = (x-xc)”2 + (y-yc)"2;
pi = 2.0*asin(1.0);
sigma = 1.0;
sigma2 = sigma*sigma;
if (t <= tcut)
if (r2 <= rcut2)

r = sqrt(r2);
A = 1.0/(sqrt(2.0*pi)*sigma)*exp(-r2/(2.0*sigma2));
else
A = 0.0;
end
else
A = 0.0;
end
dTdt(1) = alpha_e*d2Tdx2(1) + alpha _e*d2Tdy2(1) - g*(Told(1) - Told(2)) + A;
dTdt(2) = alpha_n*d2Tdx2(2) + alpha n*d2Tdy2(2) + g*(Told(1) - Told(2));

dTdt_out = dTdt(keq);

| entered the initial conditions.

function ic_out = icfunk(x,y,keq);
ic(1) = 300.0;

ic(2) = 300.0;

ic_out = ic(keq);

I entered theboundary conditions. Only the boundary conditions for each PDE at xo are shown
below, but the other six BCs are exactly analogous.

function fout = aBCxo(y,t,k);
f() = 1;

f(2) = 1;

fout = f(k);

function fout = bBCxo(y,t,k);

f(1) = 0;

f(2) = 0;

fout = F(k);

function fout = cBCxo(y,t,k);
(1) = -300;

f(2) = -300;

fout = Ff(k);

20

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

At the command line prompt, | typed.

>> [xvec,yvec,tvec,Tmat] = parapde_n_anyBC 2d_example03;

This command generated two movies, one for each dependent variable. Several frames of the
movies are shown in Figure 7. The electronic temperature is shown on the left and the nuclear
temperature on the right. A peak in the electronic temperature grows for the first 200 fs, as
energy is input into the system. The peak in the electronic temperature then falls as energy
diffuses spatially away and is transferred to the nuclear degrees of freedom. The nuclear
temperature, always much lower than the electronic temperature, rises for approximately 900 fs
then gradually falls. Note that the scale of the temperature axis is different for the electronic and
nuclear temperatures and is also different from frame to frame.

time =100 fs time =100 fs

dependent variable
dependent variable

second spatial dimension 0 first spatial dimension second spatial dimension first spatial dimension

time =200 fs time =200 fs

dependent variable
dependent variable

second spatial dimension first spatial dimension second spatial dimension first spatial dimension

Figure 7. (Frames at 100 and 200 fs.) Description of transient behavior of the electronic
temperature (left) and nuclear temperature (right) in a plate for a single pulse of ion beam lasting
200 fs.

21

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

time =500 fs time =500 fs

dependent variable
dependent variable

o . 0 o .
second spatial dimension 0 first spatial dimension second spatial dimension first spatial dimension

time =800 fs time =800 fs

dependent variable
dependent variable

second spatial dimension 0 o first spatial dimension second spatial dimension first spatial dimension
time =990 fs time =990 fs
360 et
315§
350 4
2 e L T
g 340] b T
K] 8§ 3104
> >
= 330 [R R
@ @
- k<]
e e
g 0 & 305 4"
° . °
3104 .
RIS
II"“““‘\‘ 300

10 10

o . 0 o .
second spatial dimension 0 first spatial dimension second spatial dimension first spatial dimension

Figure 7. (continued) (Frames at 500, 800 and 1000 fs.) Description of transient behavior of the
electronic temperature (left) and nuclear temperature (right) in a plate for a single pulse of ion
beam lasting 200 fs.

22

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

time =2000 fs time =2000 fs

dependent variable
dependent variable

second spatial dimension second spatial dimension

first spatial dimension first spatial dimension

time =4000 fs time =4000 fs

dependent variable
dependent variable

second spatial dimension first spatial dimension second spatial dimension first spatial dimension

time =8000 fs time =8000 fs

dependent variable
dependent variable

second spatial dimension second spatial dimension

first spatial dimension first spatial dimension

Figure 7. (continued) (Frames at 2000, 4000 and 8000 fs.) Description of transient behavior of
the electronic temperature (left) and nuclear temperature (right) in a plate for a single pulse of ion
beam lasting 200 fs.

23

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

Appendix I. parapde_n_anyBC_2d.m

function [xvec,yvec,tvec,Tmat] = parapde_n_anyBC_2d
%

% The routine parapde_n_anyBC will solve

% a system of non-linear 2-D parabolic PDEs of the form
%

% dT/dt = f(x,y,t,T,dTdx,dTdy,d2Tdx2,d2Ydy2,d2Tdxdy)
%

% using a second order method

%

% The initial conditions must have the form

% IC: T(X,y,to,k eq) = To(x,y,k eq);

%

% The boundary conditions can be

% Dirichlet, Neumann or Mixed of the form

% x BC 1: aBCxo(y,t,k)*T(xo,y,t) + bBCxo(y,t,k)*dTdx(xo,y,t) + cBCxo(y,t,k) = 0;
% x BC 2: aBCxF(y,t,kK)*T(xf,y,t) + bBCxF(y,t,k)*dTdx(xf,y,t) + cBCxF(y,t,k) = 0;
% y BC 3: aBCyo(X,t,k)*T(x,yo,t) + bBCyo(x,t,k)*dTdx(x,yo,t) + cBCyo(x,t,k) = 0;
% y BC 4: aBCyf(x,t,kK)*T(x,yf,t) + bBCyf(x,t,k)*dTdx(x,yf,t) + cBCyf(x,t,k) = 0;

%

% The necessary functions:

% pdefunkf(x,y,t,T,dTdx,dTdy,d2Tdx2,d2Ydy2,d2Tdxdy),

% To(X,Yy,k),

% aBCxo(y,t,k), bBCxo(y,t,k), cBCxo(y,t,k), aBCxF(y,t,k), bBCxFf(y,t,k), cBCxF(y,t,k)
% aBCyo(x,t,k), bBCyo(x,t,k), cBCyo(x,t,k), aBCyFf(x,t,k), bBCyf(x,t,k), cBCyf(x,t,k)
% are entered at the bottom of the file

%

% The number of equations, neq, must be entered at the top of the file
%

% The initial value, final value and discretization in time, t,

% to, tf, and dt must be entered at the top of the file.

%

% The initial value, final value and discretization in space, X,

% xo, xF, and dx must be entered at the top of the file.

%

% The initial value, final value and discretization in space, vV,

% vyo, yF, and dy must be entered at the top of the file.

%

% The type of boundary conditions *"D", "N" or "M"

% Ffor each boundary must be entered at the top of the file.

%

24

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

% sample execution:

% [xvec,yvec,tvec,Tmat] = parapde_n_anyBC;
%

% code written by: David J. Keffer

% University of Tennessee, dkeffer@utk.edu
% code written: October 21, 2001

% comments last updated: February 26, 2014
%

clear all;

close all;

% define number of PDEs

neq = 2;

%

% define type of boundary condition

% Choices are "D* Dirichlet, i.e. bBC(t) =0

% Choices are "N* Neumann, i.e. aBC(t) =0

% Choices are "M* Mixed, bBC(t) ~= 0 & aBC(t) ~= 0
%

% The dimension is the first index 1 = x, 2 =y

% The boundary is the second index 1 =o0, 2 =F

% The equation is the third index. from 1 no neq

BC(1,1,1) = "D";
BC(1,2,1) = "D";
BC(2,1,1) = "D";
BC(2,2,1) = "D";
BC(1,1,2) = "N°;
BC(1,2,2) = "D";
BC(2,1,2) = "N";
BC(2,2,2) = "D";

% discretize time
to = 0;
tf = 4.0e+3;

= 1.0e+1;
tvec = [to:dt:tf];
nt = length(tvec);

% discretize the first spatial dimension
xo = 0;

xF = 1.0;

dx = 1.0e-1;

% include imaginary boundary nodes

25

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

xvec = [xo-dx:dx:xf+dx];
nx = length(xvec);
dxi = 1.0/dx;

% discretize the second spatial dimension

yo = O;
yf = 1.0;
dy = 1.0e-1;

% include imaginary boundary nodes
yvec = [yo-dy:dy:yf+dy];

ny = length(yvec);

dyi = 1.0/dy;

% dimension solution
Tmat = zeros(nx,ny,nt,neq);

% dimension temporary vectors

Told = zeros(nx,ny,neq);
Ttem = zeros(nx,ny,neq);
Tnew = zeros(nx,ny,neq);

1 =1;
t = tvec(i);
for k = 1:1:neq
for j = 2:1:nx-1
for m = 2:1:ny-1
Tmat(J,m,i,k) = icfunk(xvec(j),yvec(m),k);
end
end
end

% apply initial conditions to all real nodes

%

% apply Neumann/Mixed BCs as ICs at imaginary nodes
%

for k = 1:1:neq

% along initial boundary of first spatial dimension

if (BC(1,1,k) ~= "D")
for m = 2:1:ny-1
y = yvec(m);

26

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

Tmat(1,m,i,k) = 2.0*dx/bBCxo(y,t,k)*(aBCxo(y,t,k)*Tmat(2,m,i,k) +
bBCxo(y,t,k)/(2.0*dx)*Tmat(3,m, i1,k) + cBCxo(y,t,k));
end
end
% along second boundary of first spatial dimension
if (BC(1,2,k) ~= "D")
for m = 2:1:ny-1
y = yvec(m);
Tmat(nx,m,i,k) = 2.0*dx/bBCxF(y,t,k)*(-aBCxF(y,t,kK)*Tmat(nx-1,m,i,k) +
bBCxF(y,t,k)/(2.0*dx)*Tmat(nx-2,m,i,k) - cBCxF(y,t,k));
end
end
% along initial boundary of second spatial dimension
if (BC(2,1,k) ~= "D")
for j = 2:1:nx-1
x = xvec(J);
Tmat(,1,i,k) = 2.0*dy/bBCyo(x,t,k)*(aBCyo(x,t,k)*Tmat(j,2,1,k) +
bBCyo(x,t,k)/(2.0*dy)*Tmat(j,3,1,k) + cBCyo(x,t,k));
end
end
% along second boundary of second spatial dimension
if (BC(2,2,k) ~= "D")
for j = 2:1:nx-1
x = xvec(J);
Tmat(@,ny,i,k) = 2.0*dy/bBCyf(x,t,k)*(-aBCyf(x,t,k)*Tmat(j,ny-1,i,k) +
bBCyf(x,t,k)/(2.0*dy)*Tmat(J,ny-2,i,k) - cBCyf(x,t,k));
end
end
end
%
% Determine, based on type of BC, how to define which nodes are determined by PDE vs BCs
% #dvaro = index of first node to be solved by PDE
% #dvarf = index of last node to be solved by PDE
% nvar = number of nodes to be solved by PDE
%
% TFirst index of these three variables is spatial dimension
% second index §s equation
ivaro = zeros(2,neq);
ivarf = zeros(2,neq);
nvar = zeros(2,neq);
for k = 1:1:neq
% a@nitial boundary of first spatial dimension
if (BC(1,1,k) == D)
ivaro(1,k) = 3;

27

%

%

%

%

%

end

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

else
ivaro(1,k) = 2;
end
final boundary of first spatial dimension
if (BC(1,2,k) == "D")
ivarf(1,k) = nx-2;
else
ivarf(1,k) = nx-1;
end
number of nodes along first spatial dimension
nvar(l,k) = ivarf(l,k) - ivaro(l,k) + 1;
initial boundary of second spatial dimension

if (BC(2,1,k) == "D)
ivaro(2,k) = 3;
else
ivaro(2,k) = 2;
end

final boundary of second spatial dimension
if (BC(2,2,k) == "D")
ivarf(2,k) = ny-2;
else
ivarf(2,k)
end
number of nodes along second spatial dimension
nvar(2,k) = ivarf(2,k) - ivaro(2,k) + 1;

ny-1;

% loop over times
Told(1:nx,1:ny,1:neq) = Tmat(l:nx,l:ny,i,1l:neq);
for 1 = 2:1:nt

%

%
%
%

update time
t = tvec(i);

Prediction Step

% allocate memory for spatial derivatives
dTdx = zeros(nx,ny,neq);
dTdy = zeros(nx,ny,neq);

d2Tdx2
d2Tdy2

zeros(nx,ny,neq);
zeros(nx,ny,neq);

28

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

d2Tdxdy = zeros(nx,ny,neq);

% compute first and second spatial derivatives
for k = 1:1:neq
for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)

dTdx(,m,k) = 0.5*(C Told(+1,m,k) - Told(J-1,m,k))*dxi;

dTdy(,m,k) = 0.5*(C Told(,m+1,k) - Told(§,m-1,k))*dyi;

d2Tdx2(g,m,k) = (Told(+1,m,k) - 2.0*Told(§,m,k) + Told(J-1,m,k))*dxi"2;

d2Tdy2(,m,k) = (Told(g,m+1,k) - 2.0*Told(@,m,k) + Told(§,m-1,k))*dyi"2;
d2Tdxdy(g,m,k) = (Told(g+1,m+1,k) - Told(g+1,m-1,k) - Told(j-1,m+1,k) + Told(j-1,m-1,k)

)*dxi*dyi*0.25;
end
end
end

k1 = zeros(nx,ny,neq);
% estimate slope at beginning of temporal interval
for k = 1:1:neq
for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)
ki(g.,m,k) =
pdefunk(xvec(j),yvec(m),tvec(i),Told(j,m,1:neq),dTdx(j,m,1:neq),dTdy(j,m,1:neq),d2Tdx2(j,m,1:neq),d2Tdy2(j,m
,1:neq),d2Tdxdy(j,m,1:neq),k);
end
end
end

% apply Euler method for the prediction step
for k = 1:1:neq
for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)
Ttem(G,m,k) = Told(§,m,k) + dt*k1(j,m,k);
end
end
end

% apply BCs at the prediction step
for k = 1:1:neq
% along initial boundary of first spatial dimension
if (BC(1,1,k) == D)
for m = 2:1:ny-1
y = yvec(m);

29

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

Ttem(2,m,k) = -cBCxo(y,t,k)/aBCxo(y,t,Kk);

end
else
for m = 2:1:ny-1
y = yvec(m);

Ttem(1,m,k) = 2.0*dx/bBCxo(y,t,k)*(aBCxo(y,t,k)*Ttem(2,m,k)

bBCxo(y,t,k)/(2.0*dx)*Ttem(3,m,k) + cBCxo(y,t,k));
end
end
% along second boundary of first spatial dimension
if (BC(1,2,k) == D)
for m = 2:1:ny-1

y = yvec(m);
Ttem(nx-1,m,k) = -cBCxF(y,t,k)/aBCxF(y,t,k);
end
else
for m = 2:1:ny-1
y = yvec(m);

Ttem(nx,m,k) = 2.0*dx/bBCxf(y,t,k)*(-aBCxF(y,t,k)*Ttem(nx-1,m,k) +

bBCxF(y,t,k)/(2.0*dx)*Ttem(nx-2,m,k) - cBCxF(y,t,k));
end
end
% along initial boundary of second spatial dimension
if (BC(2,1,k) == D7)
for j = 2:1:nx-1
x = xvec(J);
Ttem(j,2,k) = -cBCyo(x,t,k)/aBCyo(x,t,Kk);
end
else
for j = 2:1:nx-1
x = xvec(J);

Ttem(j,1,k) = 2.0*dy/bBCyo(x,t,k)*(aBCyo(x,t,k)*Ttem(j,2,k)

bBCyo(Xx,t,k)/(2.0*dy)*Ttem(j,3,k) + cBCyo(Xx,t,k));
end
end
% along second boundary of second spatial dimension
if (BC(2,2,k) == "D")
for j = 2:1:nx-1
x = xvec(J);
Ttem(j,ny-1,k) = -cBCyF(x,t,k)/aBCyf(x,t,k);
end
else
for j = 2:1:nx-1
x = xvec(J);

30

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

Ttem(§,ny,k) = 2.0*dy/bBCyf(x,t,k)*(-aBCyf(x,t,k)*Ttem(j,ny-1,k) +
bBCyf(x,t,k)/(2.0*dy)*Ttem(j,ny-2,k) - cBCyFf(x,t,k));
end
end
end

%
% Correction Step
%

=S

% compute First and second spatial derivatives
for k = 1:1:neq
for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)
dTdx(G,m,k) S5*(Teem(g+1,m,k) - Ttem(-1,m,k)
dTdy(G,m,k) 5*(Ttem(g,m+1,k) Ttem(j,m-1,k)
d2Tdx2(j ,m, k) (Ttem(g+1,m,k) - 2.0*Ttem(G,m,k) + Ttem(J-1,m,k))*dxi"2;
d2Tdy2(j,m, k) (Ttem(g,m+1,k) - 2.0*Ttem(j,m,k) + Ttem(§,m-1,k))*dyi™2;
d2Tdxdy(,m,k) = (Teem(+1,m+1,k) - Ttem(+1,m-1,k) - Ttem(-1,m+1,k) + Ttem(j-1,m-1,k)
)*dxi*dyi*0.25;
end
end
end

)*dxi;
)*dyi;

Ininoo

m
1
m
m

ORI

k2 = zeros(nx,ny,neq);
% estimate slope at end of temporal interval
for k = 1:1:neq
for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)
k2g,m,k) =
pdefunk(xvec(j),yvec(m),tvec(i),Ttem(J,m,1:neq),dTdx(j,m,1:neq),dTdy(,m,1:neq),d2Tdx2(j,m,1:neq),d2Tdy2(j,m
,1:neq),d2Tdxdy(j,m,1:neq),k);
end
end
end

% apply second-order method for the correction step
for k = 1:1:neq
for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)
Tnew({,m,k) = Told(@,m,k) + 0.50*dt*(k1(J,m,k)+k2(g,m,k));
end
end

31

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

end

% apply BCs at the correction step
for k = 1:1:neq
% along initial boundary of first spatial dimension

if (BC(1,1,k) == "D")
for m = 2:1:ny-1
y = yvec(m);
Tnew(2,m,k) = -cBCxo(y,t,k)/aBCxo(y,t,Kk);
end
else
for m = 2:1:ny-1
y = yvec(m);

Tnew(1,m,k) = 2.0*dx/bBCxo(y,t,k)*(aBCxo(y,t,k)*Tnew(2,m,k) +
bBCxo(y,t,k)/(2.0*dx)*Tnew(3,m,k) + cBCxo(y,t,k));
end
end
% along second boundary of first spatial dimension
if (BC(1,2,k) == D)
for m = 2:1:ny-1

y = yvec(m);
Tnew(nx-1,m,k) = -cBCxF(y,t,k)/aBCxF(y,t,k);
end
else
for m = 2:1:ny-1
y = yvec(m);

Tnew(nx,m,k) = 2.0*dx/bBCxf(y,t,k)*(-aBCxF(y,t,k)*Tnew(nx-1,m,k) +
bBCxF(y,t,k)/(2.0*dx)*Tnew(nx-2,m,k) - cBCxF(y,t,k));
end
end
% along initial boundary of second spatial dimension
if (BC(2,1,k) == "D")
for j = 2:1:nx-1
x = xvec(J);
Tnew(j,2,k) = -cBCyo(x,t,k)/aBCyo(x,t,Kk);
end
else
for j = 2:1:nx-1
x = xvec(J);
Tnew(j,1,k) = 2.0*dy/bBCyo(x,t,k)*(aBCyo(x,t,k)*Tnew(j,2,k) +
bBCyo(Xx,t,k)/(2.0*dy)*Tnew(j,3,k) + cBCyo(Xx,t,k));
end

32

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

end
% along second boundary of second spatial dimension
if (BC(2,2,k) == "D")
for j = 2:1:nx-1
x = xvec(J);
Tnew(j,ny-1,k) = -cBCyF(x,t,k)/aBCyf(x,t,k);
end
else
for j = 2:1:nx-1
x = xvec(J);
Tnew(j,ny,k) = 2.0*dy/bBCyf(x,t,k)*(-aBCyf(x,t,k)*Tnew(j,ny-1,k) +
bBCyf(x,t,k)/(2.0*dy)*Tnew(j,ny-2,k) - cBCyFf(x,t,k));
end
end
end

% store new temperatures
Tmat(l:nx,1:ny,i,1:neq) = Tnew(l:nx,1l:ny,1l:neq);
Told(1:nx,1:ny,1:neq) = Tnew(l:nx,1l:ny,1l:neq);
end

% plot via movie

% number of frames in movie
nframe = 40;
% frames per second
fps = 3;
if (nt > nframe)
nskip = round(nt/nframe);
else
nskip = 1;
end
Iplot = 1;
it (Iplot == 1)
fpsinv = 1.0/fps;
newplot;
[xp,yp]l = meshgrid(xvec(2:1:nx-1),yvec(2:1:ny-1));
for k = 1:1:neq
Tmax(k)=max(max(max(Tmat(2:nx-1,2:ny-1,1:nt,k))
Tmin(kK)=min(min(min(Tmat(2:nx-1,2:ny-1,1:nt,k))
ztext(k) = Tmin(k) + 1.4*(Tmax(k)-Tmin(k));
end

));
));

33

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

xtext
ytext

X0 + 0.01*(xF-x0);
yo + 0.99*(yf-yo);

for i=l:nskip:nt
temps = char(strcat("time = ", num2str(tvec(i)), " sec "));
for k = 1:1:neq
fig = figure(k);
set(fig, "Units","normalized”);
set(fig, "Position”, [.08+(k-1)*.44 .2 .4 .6]);
%color_index = get_plot_color(k);
surf(xp, yp, Tmat(2:1:nx-1,2:1:ny-1,i,k))
axis([xo xF yo yf Tmin(k) Tmax(k)]);
xlabel ("first spatial dimension®);
ylabel ("second spatial dimension®);
zlabel ("dependent variable™);
%legend (int2str([1:neq]”));
text(xtext, ytext,ztext(k), temps);
hold off
end
pause(fpsinv);
end
end

%
% functions defining PDE
%

function dTdt_out = pdefunk(x,y,t,Told,dTdx,dTdy,d2Tdx2,d2Tdy2,d2Tdxdy,keq);
% rho = density [kg/m"3]

rho = 2700.0;

% Cp = heat capacity [J/kg/K]
Cp_molar = 24.2; % J/mol/K

MW_gpm = 26.9815385; % g/mol
MW_kgpm = MW_gpm/1000.0; % kg/mol
Cp = 24.2/MW_kgpm;

% k = thermal conductivity [W/m/K]
k = 237.0;

% alpha = thermal diffusivity
alpha = k/rho/Cp;

%

% convective heat loss in rod 1

34

%

dTdt(1) = alpha*d2Tdx2(1) + alpha*d2Tdy2(1);
% convective heat loss in rod 3

% rod 3 is concentric around rod 2

% heat lost by rod 2 is gained by rod 3
dTdt(2) = alpha*d2Tdx2(2) + alpha*d2Tdy2(2);
dTdt_out = dTdt(keq);

%

% function defining initial condition

%

function ic_out = icfunk(x,y,keq);

ic(1) = 300.0;

ic(2) = 350.0 + 10.0*sin(x*2.0*pi)*sin(y*2.0*pi);
ic_out = ic(keq);

%

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

% fFunctions defining initial boundary condition in first spatial dimension

%

function fout = aBCxo(y,t,k);

f(1) = 1;

f(2) = 0;

fout = F(k);

function fout = bBCxo(y,t,k);
f(1) = 0;

f(2) = 1;

fout = f(k);

function fout = cBCxo(y,t,k);
f(1) = -300;

f(2) = 0;

fout = F(k);

%

% Functions defining final boundary condition in first spatial dimension

%

function fout = aBCxf(y,t,k);

(1) = 1;
f(2) = 1;

35

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

fout = F(K);

function fout = bBCxf(y,t,k);
f(1) = 0;

f(2) = 0;

fout = f(k);

function fout = cBCxf(y,t,k);
(1) = -400;

f(2) = -400;

fout = F(K);

%
% Functions defining initial boundary condition in second spatial dimension
%

function fout = aBCyo(Xx,t,k);
f() = 1;

f(2) = 0;

fout = f(k);

function fout = bBCyo(x,t,k);

f(1) = 0;

f(2) = 1;

fout = f(k);

function fout = cBCyo(X,t,k);
(1) = -300;

f(2) = 0;

fout = f(k);

%
% Functions defining final boundary condition in second spatial dimension
%

function fout = aBCyf(x,t,k);
f(1) = 1;

f(2) = 1;

fout = F(K);

function fout = bBCyf(x,t,k);

(1) = 0;

36

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

f(2) = 0;

fout = f(k);

function fout = cBCyf(x,t,k);
(1) = -400;

f(2) = -400;

fout = f(k);

37

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

Appendix Il. parapde_n_anyBC_2d_cyl.m

function [xvec,yvec,tvec,Tmat] = parapde_n_anyBC_2d
%

% The routine parapde_n_anyBC will solve

% a system of non-linear 2-D parabolic PDEs of the form
%

% dT/dt = f(x,y,t,T,dTdx,dTdy,d2Tdx2,d2Ydy2,d2Tdxdy)
%

% using a second order method

%

% The initial conditions must have the form

% IC: T(X,y,to,k eq) = To(x,y,k eq);

%

% The boundary conditions can be

% Dirichlet, Neumann or Mixed of the form

% x BC 1: aBCxo(y,t,k)*T(xo,y,t) + bBCxo(y,t,k)*dTdx(xo,y,t) + cBCxo(y,t,k) = 0;
% x BC 2: aBCxF(y,t,kK)*T(xf,y,t) + bBCxF(y,t,k)*dTdx(xf,y,t) + cBCxF(y,t,k) = 0;
% y BC 3: aBCyo(x,t,k)*T(x,yo,t) + bBCyo(x,t,k)*dTdx(x,yo,t) + cBCyo(x,t,k) = 0;
% y BC 4: aBCyf(x,t,k)*T(x,yf,t) + bBCyf(x,t,k)*dTdx(x,yf,t) + cBCyf(x,t,k) = 0;

%

% The necessary functions:

% pdefunkf(x,y,t,T,dTdx,dTdy,d2Tdx2,d2Ydy2,d2Tdxdy),

% To(X,Yy,k),

% aBCxo(y,t,k), bBCxo(y,t,k), cBCxo(y,t,k), aBCxF(y,t,k), bBCxFf(y,t,k), cBCxF(y,t,k)
% aBCyo(x,t,k), bBCyo(x,t,k), cBCyo(x,t,k), aBCyFf(x,t,k), bBCyf(x,t,k), cBCyf(x,t,k)
% are entered at the bottom of the file

%

% The number of equations, neq, must be entered at the top of the file
%

% The initial value, final value and discretization in time, t,

% to, tf, and dt must be entered at the top of the file.

%

% The initial value, final value and discretization in space, X,

% xo, xF, and dx must be entered at the top of the file.

%

% The initial value, final value and discretization in space, vV,

% vyo, yF, and dy must be entered at the top of the file.

%

% The type of boundary conditions "D", "N" or °"M"

% Ffor each boundary must be entered at the top of the file.

%

% sample execution:

38

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

% [xvec,yvec,tvec,Tmat] = parapde_n_anyBC 2d_exampleO1l;
%

% code written by: David J. Keffer

% University of Tennessee, dkeffer@utk.edu
% code written: October 21, 2001

% comments last updated: February 12, 2015
%

clear all;

close all;

% define number of PDEs

neq = 1;

%

% define type of boundary condition

% Choices are "D* Dirichlet, i.e. bBC(t) =0

% Choices are "N* Neumann, i.e. aBC(t) =0

% Choices are "M* Mixed, bBC(t) ~= 0 & aBC(t) ~= 0
%

% The dimension is the first index 1 =z, 2 = r

% The boundary is the second index 1 =o0, 2 =F

% The equation is the third index. from 1 no neq

BC(1,1,1) = "D";
BC(1,2,1) = "D";
BC(2,1,1) = "N°;
BC(2,2,1) = "N";

% discretize time

to = O;

tf = 1.0e+2;

dt = 1.0e-1;

tvec = [to:dt:tf];
nt = length(tvec);

% discretize the Ffirst spatial dimension

xo = 0;
xf = 1.0;
dx = 5.0e-2;

% include imaginary boundary nodes
xvec = [xo-dx:dx:xf+dx];

nx = length(xvec);

dxi = 1.0/dx;

39

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

% discretize the second spatial dimension

dy = 1.0e-2;
= dy’
yf =0.1;

% include imaginary boundary nodes
yvec = [yo-dy:dy:yf+dy];

ny = length(yvec);

dyi = 1.0/dy;

% dimension solution
Tmat = zeros(nx,ny,nt,neq);

% dimension temporary vectors

Told = zeros(nx,ny,neq);
Ttem = zeros(nx,ny,neq);
Tnew = zeros(nx,ny,neq);

% apply initial conditions to all real nodes
| =1;
tvec()
for k = 1:neq
for J 2 1:nx-1
for = 2:1:ny-1
Tmat(j,m,i,k) = icfunk(xvec(j),yvec(m),k);
end
end
end

%
% apply Neumann/Mixed BCs as ICs at imaginary nodes
%
for k = 1:1:neq
% along initial boundary of first spatial dimension
if (BC(1,1,k) ~= D)
for m = 2:1:ny-1
y = yvec(m);
Tmat(1,m,i,k) = 2.0*dx/bBCxo(y,t,k)*(aBCxo(y,t,k)*Tmat(2,m,i,k)
bBCxo(y,t,k)/(2.0*dx)*Tmat(3,m, i,k) + cBCxo(y,t,k));
end
end
% along second boundary of first spatial dimension

40

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

if (BC(1,2,k) ~= "D)
for m = 2:1:ny-1
y = yvec(m);
Tmat(nx,m,i,k) = 2.0*dx/bBCxF(y,t,k)*(-aBCxF(y,t,kK)*Tmat(nx-1,m,i,k) +
bBCxF(y,t,k)/(2.0*dx)*Tmat(nx-2,m,i,k) - cBCxF(y,t,k));
end
end
% along initial boundary of second spatial dimension
if (BC(2,1,k) ~= "D)
for j = 2:1:nx-1
x = xvec(J);
Tmat(J,1,i,k) = 2.0*dy/bBCyo(x,t,k)*(aBCyo(x,t,k)*Tmat(j,2,1,k) +
bBCyo(x,t,k)/(2.0*dy)*Tmat(j,3,1,k) + cBCyo(x,t,k));
end
end
% along second boundary of second spatial dimension
if (BC(2,2,k) ~= "D)
for j = 2:1:nx-1
x = xvec(J);
Tmat(@,ny,i,k) = 2.0*dy/bBCyf(x,t,k)*(-aBCyf(x,t,k)*Tmat(j,ny-1,i,k) +
bBCyf(x,t,k)/(2.0*dy)*Tmat(J,ny-2,i,k) - cBCyf(x,t,k));
end
end
end
%
% Determine, based on type of BC, how to define which nodes are determined by PDE vs BCs
% dvaro = index of first node to be solved by PDE
% #dvarf = index of last node to be solved by PDE
% nvar = number of nodes to be solved by PDE
%
% TFirst index of these three variables is spatial dimension
% second index §s equation
ivaro = zeros(2,neq);
ivarf = zeros(2,neq);
nvar = zeros(2,neq);
for k = 1:1:neq
% initial boundary of first spatial dimension
if (BC(1,1,k) == D)
ivaro(1,k) = 3;
else
ivaro(1,k) = 2;
end
% fFinal boundary of first spatial dimension
if (BC(1,2,k) == D)

41

ivarf(1,k)

else

ivarf(1,k)

end

% number of nodes

else

ivaro(2,k)

end

% Final boundary of second spatial dimension
if (BC(2,2,k)
ivarf(2,k)

else

ivarf(2,k)

end

% number of nodes

end

% loop over times
Told(1:nx,1:ny,1:neq) = Tmat(l:nx,l:ny,i,1l:neq);
for 1 = 2:1:nt
% update time
t = tvec(i);

%

% Prediction Step

%

% allocate memory for spatial derivatives
zeros(nx,ny,neq);
zeros(nx,ny,neq);
zeros(nx,ny,neq);
zeros(nx,ny,neq);

d2Tdxdy = zeros(nx,ny,neq);

dTdx =
dTdy =
d2Tdx2
d2Tdy2

% compute first and second spatial derivatives

for k = 1:1:neq

for j

ivaro(1,k):1:ivarf(1,k)

first spatial dimension
nvar(l,k) = ivarf(l1,k) - ivaro(l,k) + 1;

% initial boundary of second spatial dimension

if (BC(2,1,k)

ivaro(2,k)

along second spatial dimension
nvar(2,k) = ivarf(2,k) - ivaro(2,k) + 1;

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

42

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

for m = ivaro(2
dTdx((,m,k)
dTdy((G,m,k)

kK):1:ivarf(2,k)
0.5*(Told(+1,m,k) - Told(g-1,m,
5% Told(,m+1,k) j.m-1,
d2Tdx2(j ,m, k) (Told(gg+1,m,k) - 2. ,m, 1,
d2Tdy2(j,m, k) (Told(,m+1,k) - 2. ,m, ,M-
d2Tdxdy(j,m,k) = (Told(+1,m+1,k) - Told(J+1,m-1,k) - Told(
)*dxi*dyi*0.25;
end
end
end

o
|
—
(@]
o
Q
E

,K))*dxin2;
,K))*dyin2;
1,m+1,k) + Told(j-1,m-1,k)

k1l = zeros(nx,ny,neq);
% estimate slope at beginning of temporal interval
for k = 1:1:neq
for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)
% fprintf(l, "main %e %e %e %e %e\n", k, j, m, ivaro(2,k), ivarf(2,k));
ki(g.,m,k) =

pdefunk(xvec(j),yvec(m),tvec(i),Told(j,m,1:neq),dTdx(j,m,1:neq),dTdy(J,m,1:neq),d2Tdx2(j,m,1:neq),d2Tdy2(j,m

,1:neq),d2Tdxdy(j,m,1:neq),k);
end
end
end

% apply Euler method for the prediction step
for k = 1:1:neq
for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)
Ttem(,m,k) = Told(,m,k) + dt*k1(,m,k);
end
end
end

% apply BCs at the prediction step
for k = 1:1:neq
% along initial boundary of first spatial dimension
if (BC(1,1,k) == "D")
for m = 2:1:ny-1
y = yvec(m);
Ttem(2,m,k) = -cBCxo(y,t,k)/aBCxo(y,t,Kk);
end
else
for m = 2:1:ny-1

43

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

y = yvec(m);
Ttem(1,m,k) = 2.0*dx/bBCxo(y,t,k)*(aBCxo(y,t,k)*Ttem(2,m,k) +
bBCxo(y,t,k)/(2.0*dx)*Ttem(3,m,k) + cBCxo(y,t,k));
end
end
% along second boundary of first spatial dimension
if (BC(1,2,k) == "D")
for m = 2:1:ny-1
y = yvec(m);
Ttem(nx-1,m,k) = -cBCxF(y,t,k)/aBCxF(y,t,k);
end
else
for m = 2:1:ny-1
y = yvec(m);
Ttem(nx,m,k) = 2.0*dx/bBCxf(y,t,k)*(-aBCxF(y,t,k)*Ttem(nx-1,m,k) +
bBCxF(y,t,k)/(2.0*dx)*Ttem(nx-2,m,k) - cBCxF(y,t,k));
end
end
% along initial boundary of second spatial dimension
if (BC(2,1,k) == "D")
for j = 2:1:nx-1
x = xvec(J);
Ttem(j,2,k) = -cBCyo(x,t,k)/aBCyo(x,t,Kk);
end
else
for j = 2:1:nx-1
x = xvec(J);
Ttem(j,1,k) = 2.0*dy/bBCyo(x,t,k)*(aBCyo(x,t,k)*Ttem(j,2,k) +
bBCyo(x,t,k)/(2.0*dy)*Ttem(j,3,k) + cBCyo(Xx,t,k));
end
end
% along second boundary of second spatial dimension
if (BC(2,2,k) == "D")
for j = 2:1:nx-1
x = xvec(J);
Ttem(j,ny-1,k) = -cBCyF(x,t,k)/aBCyf(x,t,k);
end
else
for j = 2:1:nx-1
x = xvec(J);
Ttem(@,ny,k) = 2.0*dy/bBCyf(x,t,k)*(-aBCyFf(x,t,k)*Ttem(j,ny-1,k) +
bBCyf(x,t,k)/(2.0*dy)*Ttem(j,ny-2,k) - cBCyFf(x,t,k));
end
end

44

%
%
%

%

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

end

Correction Step

compute first and second spatial derivatives
for k = 1:1:neq
for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)

dTdx(g,m,k) = 0.5*(Ttem(J+1,m,k) - Ttem(J-1,m,Kk))*dxi;

dTdy(,m,k) = 0.5*(Ttem(,m+1,k) - Ttem(§,m-1,k))*dyi;

d2Tdx2(j,m,k) = (Ttem(+1,m,k) - 2.0*Ttem(jJ,m,k) + Ttem(G-1,m,k))*dxi"2;

d2Tdy2(j,m,k) = (Ttem(G,m+1,k) - 2.0*Ttem(jJ,m,k) + Ttem(§,m-1,k))*dyi"2;
d2Tdxdy(,m,k) = (Teem(+1,m+1,k) - Ttem(+1,m-1,k) - Ttem(-1,m+1,k) + Ttem(j-1,m-1,k)

)*dxi*dyi*0.25;

end
end
end

k2 = zeros(nx,ny,neq);
% estimate slope at end of temporal interval

for k = 1:1:neq
for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)
k2g,m,k) =

pdefunk(xvec(j),yvec(m),tvec(i),Ttem(J,m,1:neq),dTdx(j,m,1:neq),dTdy(J,m,1:neq),d2Tdx2(j,m,1:neq),d2Tdy2(j,m
,1:neq),d2Tdxdy(j,m,1:neq),k);

end
end
end

% apply second-order method for the correction step

%

for k = 1:1:neq

for j = ivaro(l,k):1:ivarf(l,k)
for m = ivaro(2,k):1:ivarf(2,k)
Tnew(j,m,k) = Told(@,m,k) + 0.50*dt*(k1((,m,k)+k2(G,m,k));
end
end
end

apply BCs at the correction step

45

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

for k = 1:1:neq
% along initial boundary of first spatial dimension
if (BC(1,1,k) == D)
for m = 2:1:ny-1

y = yvec(m);
Tnew(2,m,k) = -cBCxo(y,t,k)/aBCxo(y,t,Kk);
end
else
for m = 2:1:ny-1
y = yvec(m);

Tnew(1,m,k) = 2.0*dx/bBCxo(y,t,k)*(aBCxo(y,t,k)*Tnew(2,m,k)

bBCxo(y,t,k)/(2.0*dx)*Tnew(3,m,k) + cBCxo(y,t,k));
end
end
% along second boundary of first spatial dimension
if (BC(1,2,k) == D)
for m = 2:1:ny-1

y = yvec(m);
Tnew(nx-1,m,k) = -cBCxF(y,t,k)/aBCxF(y,t,k);
end
else
for m = 2:1:ny-1
y = yvec(m);

Tnew(nx,m,k) = 2.0*dx/bBCxf(y,t,k)*(-aBCxF(y,t,k)*Tnew(nx-1,m,k) +

bBCxF(y,t,k)/(2.0*dx)*Tnew(nx-2,m,k) - cBCxF(y,t,k));
end
end
% along initial boundary of second spatial dimension
if (BC(2,1,k) == D)
for j = 2:1:nx-1
x = xvec(J);
Tnew(j,2,k) = -cBCyo(x,t,k)/aBCyo(x,t,Kk);
end
else
for j = 2:1:nx-1
x = xvec(J);

Tnew(j,1,k) = 2.0*dy/bBCyo(x,t,k)*(aBCyo(x,t,k)*Tnew(j,2,k)

bBCyo(Xx,t,k)/(2.0*dy)*Tnew(j,3,k) + cBCyo(Xx,t,k));

end
end
% along second boundary of second spatial dimension
if (BC(2,2,k) == D)

for j = 2:1:nx-1
x = xvec(J);

46

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

Tnew(j,ny-1,k) = -cBCyF(x,t,k)/aBCyf(x,t,k);

end
else
for j = 2:1:nx-1
x = xvec(J);

Tnew(j,ny,k) = 2.0*dy/bBCyf(x,t,k)*(-aBCyf(x,t,k)*Tnew(j,ny-1,k) +

bBCyf(x,t,k)/(2.0*dy)*Tnew(j,ny-2,k) - cBCyFf(x,t,k));

end
end
end

% store new temperatures

Tmat(l:nx,1:ny,i,1:neq) = Tnew(l:nx,1l:ny,1l:neq);
Told(1:nx,1:ny,1:neq) = Tnew(l:nx,1l:ny,1l:neq);

end
% plot via movie

% number of frames in movie
nframe = 40;
% frames per second
fps = 3;
if (nt > nframe)
nskip = round(nt/nframe);
else
nskip = 1;
end
Iplot = 1;
it (Iplot == 1)
fpsinv = 1.0/fps;
newplot;

[xp,yp]l = meshgrid(xvec(2:1:nx-1),yvec(2:1:ny-1));

for k = 1:1:neq

Tmax(k)=max(max(max(Tmat(2:nx-1,2:ny-1,1:nt,k))
Tmin(kK)=min(min(min(Tmat(2:nx-1,2:ny-1,1:nt,k))
ztext(k) = Tmin(k) + 1.4*(Tmax(k)-Tmin(k));

end

xtext = xo + 0.01*(xF-x0);
ytext = yo + 0.99*(yf-yo);
for i=l:nskip:nt

temps = char(strcat("time

for k = 1:1:neq

));
));

*, num2str(tvec(i)), " sec "));

47

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

fig = figure(k);
set(fig, "Units","normalized”);
set(fig, "Position”, [.08+(k-1)*.44 .2 .4 .6]);
%color_index = get_plot_color(k);
surf(xp, yp, Tmat(2:1:nx-1,2:1:ny-1,i,k)")
axis([xo xF yo yf Tmin(k) Tmax(k)]);
xlabel ("first spatial dimension®);
ylabel ("second spatial dimension®);
zlabel ("dependent variable™);
%legend (int2str([1l:neq]")):
text(xtext, ytext,ztext(k), temps);
hold off
end
pause(fpsinv);
end
end

%
% fFunctions defining PDE
%

function dTdt_out = pdefunk(z,r,t,Told,dTdz,dTdr,d2Tdz2,d2Tdr2,d2Tdzdr,keq);
%

% physical properties

%

% rho = density [kg/m"3]

rho = 8960.0;

% Cp = heat capacity [J/kg/K]

Cp = 384.6;
% k = thermal conductivity [W/m/K]
k = 401.0;

% alpha = thermal diffusivity
alpha = k/rho/Cp;

% Stefan-Boltzmann constant [J/s/m"2/K"™N]
sigma = 5.670373e-8;

% gray body permittivity

eps = 0.15; % (for dull Cu)
%eps = 0.0; % no radiative loss
% plate geometry

length 1.0; % [m]

radius = 0.1; % [m]

pi = 2.0*asin(1.0);

48

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

area = 2*pi*radius*length;

volume = pi*radius*radius*length;

s = area/volume; % 1/m

% surrounding temperature [K]

Tsurround = 300.0;

%

% PDE

%

dTdt_out = alpha*(d2Tdz2(1) + 1.0/r*dTdr(1) + d2Tdr2(1)) - eps*sigma*s/(rho*Cp)*(Told(1)”4 - Tsurround™4);
%Fprintf(l, "%e %e %e %e \n",z, r, t, dTdt_out);

%
% Function defining initial condition
%

function ic_out = icfunk(x,y,keq);
ic(1) = 1000.0;
ic_out = ic(keq);

%
% Functions defining initial boundary condition in First spatial dimension
%

function fout = aBCxo(y,t,k);

fQ»
fout

1;
LQVF

function fout = bBCxo(y,t,k);

f(1) = 0;

fout = F(k);

function fout = cBCxo(y,t,k);
(1) = -800;

fout = F(K);

%
% Functions defining final boundary condition in Ffirst spatial dimension
%

function fout = aBCxf(y,t,k);

49

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

f(1) = 1;

fout = F(K);

function fout = bBCxf(y,t,k);
f(1) = 0;

fout = f(k);

function fout = cBCxf(y,t,k);

f(1) = -1000;
fout = f(k);

%
% Functions defining initial boundary condition in second spatial dimension
%

function fout = aBCyo(X,t,k);

(1) = 0;

fout = F(K);

function fout = bBCyo(x,t,k);
f(1) = 1;

fout = f(k);

function fout = cBCyo(x,t,k);
(1) = 0;

fout = F(K);

%
% Functions defining final boundary condition in second spatial dimension
%

function fout = aBCyf(x,t,k);
% heat transfer coefficient In [W/m"2/K]

h = 4_.0e+1;
f(1) = h;
fout = f(k);

function fout = bBCyf(x,t,k);
% kc = thermal conductivity [W/m/K]

kc = 401.0;
(1) = kc;
fout = F(k);

50

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

function fout = cBCyf(x,t,k);

% heat transfer coefficient In [W/m"2/K]
h = 4_0e+1;

% surrounding temperature [K]

Tsurround = 300.0;

(1) = -h*Tsurround;

fout = f(k);

51

