
D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 1

Numerical Methods for Solving a Single Nonlinear Parabolic PDE

David Keffer
Department of Materials Science & Engineering

University of Tennessee, Knoxville
date begun: May, 1999

last revised: March 11, 2014

Table of Contents
I. Formulation .. 1
II. Method Formulation for General Systems .. 2
III. Heat Transfer Application ... 3
IV. Method Formulation for Systems Dominated by Convection (Flow) 7
V. Plug Flow Reactor Application ... 7

V.A. Using the Appropriate Flow-Dominated Routine ... 7
V.B. Using the Inappropriate General Routine .. 12

Appendix I. parapde_1_anyBC.m .. 13
Appendix II. parapde_1_anyBC_flow.m ... 18

I. Formulation

Nonlinear parabolic partial differential equations are, in their most general form, given by:

),,,,(
t

2TTTtxK
T





 (1)

An example of this is the general form of the linear parabolic PDE, which we solved in the last
section.

    fTbaTTc
T





t
 (2)

Another example is

    fTbaTTc
T



 2

t
 (3)

Because equation (3) is no longer linear in the temperature and its derivatives, the techniques for
solving linear parabolic PDEs, e.g. the Crank-Nicolson method no longer apply. We cannot
reduce equation (3) to a discrete system of linear equations.
 Instead we shall use an approach that is essentially Heun’s method, a second order method,
for solving systems of ODEs. The extension to PDEs is straightforward since we will transform
the PDE to a system of ODEs through the use of finite-difference formulae for the gradient and
Laplacian.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 2

II. Method Formulation for General Systems

 This section provides a derivation of the second-order finite difference equations for
nonlinear parabolic PDEs
 Let j superscripts designate temporal increments and let i subscripts designate spatial
increments. For purposes of brevity only, we will consider the case with variation only in one
spatial dimension. Our most general parabolic PDE becomes in one spatial dimension

),,,,(
t

2TTTtxK
T





 (1)

Looking at it in this light, we can obtain a new estimate of the temperature, one increment ahead
in time, namely

t

TT

tt

TTT j
i

j
i

jj

j
i

j
i

i 














 



 1

1

1

t
 (4)

This statement is true at any given point i in space. It is a can make a forward finite difference
formula of the partial derivative with respect to time. In the second-order method, we will
approximate the slope with the average of two functional evaluations of the PDE, one at the
beginning of the interval and one at the end.

 

 j
i

j
i

jjj
ji

jjj
ji

i

KK

TTTtxKTTTtxK
T


















1

21211
1

2

1

),,,,(),,,,(
2

1

t
 (5)

so that:

  j
i

j
i

j
i

j
i KK

t
TT 


  11

2
 (6)

The problem here is that we have no way of determining 1j

iT , which is used as an argument in
1j

iK unless we rely on a costly and inefficient method for finding the roots of a system of non-

linear algebraic equations at each time iteration. This method is, of course, an option, but if we
only want second order accuracy in our model, there are other, easier ways to get it.
 We can estimate (or predict) the value of the new temperature using the Euler method,

 j
i

j
i

j
i tKTT 1 (7)

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 3

With this prediction, we can evaluate 1j
iK . Once we know, 1j

iK , we can use Heun’s method

(equation (6)) to correct the new value of the temperature.
 It is important to remember that these j

iK are functions not only of j
iT but of the

temperature at all spatial points  jT . So we have to solve a system of ODEs simultaneously,

which we have now done many times in this course.
 Also, we need to recognize that the gradients and Laplacians inside j

iK must be evaluated

using the same finite difference formulae as were used in the linear case, namely:

x

TT

xx

TTT j
i

j
i

ii

j
i

j
i

j

i 














 





2x
11

11

11 (8)

and

2

11

11

2

2 2

x x

TTT

x

x

TT

x

TT

T j
i

j
i

j
i

j
i

j
i

j
i

j
i

j

i






































 



 (9)

A code that implements this routine, parapde_1_anyBC.m, is provided in Appendix 1 below.

III. Heat Transfer Application

 The one-dimensional heat equation can describe heat transfer in a material with both heat
conduction and radiative heat loss.

 44

2

2

t s
pp

TT
C

S

dz

Td

C

kT










The radiative heat loss term involves temperature to the fourth power and is therefore nonlinear.
Consider a cylindrical Cu rod of diameter 0.01 m and length 0.1 mm, which is initially at

1000)0,(tzT K. One end of the rod is maintained at 1000),0( tzT K, a Dirichlet

boundary condition. The other end of the rod is insulated, 0
1.0


zdz

dT
 K/m, a Neumann

boundary condition.
In this problem, we will employ the following units and numerical values for parameters.
 ● temperature in the material T [K]
 ● surrounding temperature 300sT [K]

 ● axial position along material z [m]
 ● thermal conductivity k 401 [J/K/m/s] (for Cu)
 ● mass density  8960 [kg/m3] (for Cu)

 ● heat capacity 6.384pC [J/kg/K] (for Cu)

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 4

 ● Stefan–Boltzmann constant 8105.670373  x [J/s/m2/K4]
 ● gray body permittivity 15.0 (for dull Cu)
 ● surface area to volume ratio 200S [m-1] (for a cylindrical rod of diameter 0.01 m)

This is a single non-linear parabolic PDE with one spatial dimension and a Dirichlet boundary
condition at z=0 and a Neumann boundary condition at z=0.1. To solve this problem, I will use
the code parapde_1_anyBC.m.

I modified the input functions in parapde_1_anyBC.m as follows.

I assigned the appropriate type of boundary conditions.

BC(1) = 'D';
BC(2) = 'N';

I set the final time to 100 seconds and chose dt to be 0.1 seconds, so I had 1000 temporal
intervals.

% discretize time
to = 0;
tf = 1.0e+2;
dt = 1.0e-1;

The rod spans from 0 to 0.1 meter. I set dx to be 0.005 m, so I had 20 spatial intervals.

% discretize space
xo = 0;
xf = 0.1;
dx = 5.0e-3;

I defined the PDE in the following function.

%
% function defining PDE
%
function k = pdefunk(x,t,y,dydx,d2ydx2);
%
Temp = y;
% rho = density [kg/m^3]
rho = 8960.0;
% Cp = heat capacity [J/kg/K]
Cp = 384.6;
% k = thermal conductivity [W/m/K]
k = 401.0;
% alpha = thermal diffusivity
alpha = k/rho/Cp;
% length of rod [m]
L = 0.1;
% diameter in [m]
radius = 0.1;
diameter = 2.0*radius;
% surface Area in [m^2]
Area = pi*diameter*L;

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 5

% Volume in [m^3]
Volume = pi/4*diameter^2*L;
% surface area to volume ratio
S = Area/Volume;
% Temperature of the surroundings [K]
Tsurround = 300.0;
% Stefan-Boltzmann constant [J/s/m^2/K^4]
sigma = 5.670373e-8;
% gray body permittivity [dimensionless]
eps = 0.15;
fac = eps*sigma*S/(rho*Cp);
k = alpha*d2ydx2 - fac*(Temp^4 - Tsurround^4);

I defined the IC and BCs in the functions below.

%
% function defining initial condition
%

function ic = icfunk(x);
ic = 1000;

%
% functions defining LHS boundary condition
%

function f = aBCo(t);
f = 1;

function f = bBCo(t);
f = 0;

function f = cBCo(t);
f = -1000;

%
% functions defining RHS boundary condition
%

function f = aBCf(t);
f = 0;

function f = bBCf(t);
f = 1;

function f = cBCf(t);
f = 0;

At the command line prompt, I typed

[xvec,tvec,Tmat] = parapde_1_anyBC;

 This command generated the plot shown in Figure 1.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 6

To find the last value at x = 0.1 m, I confirmed that I knew the correct spatial and temporal
indices.

>> xvec(22)
ans = 0.1000

>> tvec(1001)
ans = 100

>> Tmat(22,1001)
ans = 998.0308

Therefore the temperature at the end at 100 seconds is 998.03 K.

I don’t know that this is steady state. I can run the simulation longer. If I change nothing but the
final time to 1000 seconds, then I generate the data point

>> Tmat(22,10001)
ans = 997.9108

Therefore the temperature at the end at 1000 seconds is 997.91 K.
The two answers agree to three digits, so we are pretty close to the steady state solution, but we
can run for a longer time. If I change nothing but the final time to 5000 seconds, then I generate
the data point

>> Tmat(22,50001)
ans = 997.9108

Therefore the temperature at the end at 5000 seconds is 997.91 K.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
998

998.2

998.4

998.6

998.8

999

999.2

999.4

999.6

999.8

1000

position (m)

T
em

pe
ra

tu
re

 (
K

)

Figure 1. Transient behavior of a rod with radiative heat loss.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 7

IV. Method Formulation for Systems Dominated by Convection (Flow)

It turns out that if you apply this code to a flowing system, that the algorithm is unstable, as will
be demonstrated in the following section. A simple modification to the code removes this
instability.

If the velocity is positive, then flowing material or energy moves from left to right. This
introduces an asymmetry in the problem that is not well handled by the centered-finite difference
formula. Therefore, we replace the centered-finite-difference formula with the backward finite
difference formula.

x

TT

xx

TTT j
i

j
i

ii

j
i

j
i

j

i 














 



 1

1

1

x
 (10)

The formula for the Laplacian is left alone. This change will allow the code to be stable when
describing convection-dominated systems.

A code that implements this routine, parapde_1_anyBC_flow.m, is provided in Appendix 2
below.

An example of a convection dominated problem using both codes is provided in the next section.

V. Plug Flow Reactor Application

V.A. Using the Appropriate Flow-Dominated Routine

 Consider a plug flow reactor. (This is a pipe with a reaction taking place in the fluid flowing
inside it. Consider the irreversible reaction

 BA 2

taking place in a non-reactive solvent.

The molar balance for component A is given by

 r
dz

Cd
D

dz

dC
v

C
A

AAA 



2

2

t

where z is the spatial dimension in the axial direction, t is time, CA is the molar concentration of
species A, v is the axial velocity, D is the diffusion coefficient, A is the stochiometric for
species A, (namely -2) and r is the reaction rate. The reaction rate is given by

 2

AkCr 

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 8

where k is the rate constant. Assume the reactor is operated isothermally so we have no need for
an energy balance. Since the reaction is second order, the PDE is nonlinear.

The pipe is 10 m long with a diameter of 0.1 m. The velocity is 0.1 m/s. The diffusivity is

1.0x10-9 m2/s. The rate constant is
smol

m
xk


 

3
7101 . Initially, the pipe contains nothing but

solvent. At the inlet, A is fed in at 1000.0 mol/m3 respectively. No B is present in the feed
stream. At the outlet, assume the concentrations no longer change (i.e. a no flux boundary
condition).

In this case, we can examine the reactor, strictly through the molar balance on A, since the PDE
is not coupled to any other material or energy balances. This is a single non-linear parabolic
PDEs with one spatial dimension and Dirichlet boundary conditions at z=0 and a Neumann
boundary conditions at z=10 m. Moreover, this is a system in which convection is dominant.
Therefore, to solve this problem, I will use the code parapde_1_anyBC_flow.m.

I modified the input functions in parapde_1_anyBC.m as follows.

I assigned the appropriate type of boundary conditions.

BC(1,1) = 'D';
BC(2,1) = 'N';

I set the final time to 2000 seconds and chose dt to be 1 seconds, so I had 2000 temporal
intervals.

% discretize time
to = 0;
tf = 2.0e+3;
dt = 1.0e+0;

The rod spans from 0 to 10 meters. I set dx to be 1 m, so I had 10 spatial intervals.

% discretize space
xo = 0;
xf = 10.0;
dx = 1.0e-0;

I defined the PDE in the following function.

function dydt = pdefunk(x,t,y,dydx,d2ydx2);
% molar concentrations [mol/m^3]
CA = y(1);
% velocity [m/s]
v = 0.1;
% diffusivity [m^2/s]
D = 1.0e-9;
% rate constant [m^6/mol^2/s]
k = 1.0e-5;

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 9

% stoichiometric coefficients
nuA = -2.0;
% reaction rate [mol/m^3/s]
rate = k*CA^2;
dydt = -v*dydx + D*d2ydx2 + nuA*rate;

I defined the IC and BCs in the functions below.

%
% function defining initial condition
%

function ic = icfunk(x);
ic = 0;

%
% functions defining LHS boundary condition
%

function f = aBCo(t);
f = 1;

function f = bBCo(t);
f = 0;

function f = cBCo(t);
f = -1000;

%
% functions defining RHS boundary condition
%

function f = aBCf(t);
f = 0;

function f = bBCf(t);
f = 1;

function f = cBCf(t);
f = 0;

At the command line prompt, I typed

[xvec,tvec,Tmat] = parapde_1_anyBC_flow;

 This command generated the plot shown in Figure 2.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 10

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

position (m)

C
on

ce
nt

ra
tio

n
(m

ol
/m

3)

Figure 2. Transient behavior of concentration of A in a plug flow reactor.

Interesting problems relating to the domain science of reaction engineering can be answered
using this model. For example, we can estimate how long it takes this reactor to get to steady
state. If a pipe (plug flow reactor) is L = 10 m long and the velocity is 0.1 m/s, then the

“residence time of the reactor” is given by
v

L
 , (100 s in this example) which sets a lower

bound for reaching steady state. Maybe it takes two residence times to reach steady state. We
can examine the concentration of A at the outlet as a function of time. To do so, first, we make
sure that we are plotting the correct variables.

The twelfth spatial index is the end of the pipe.

>> xvec(12)
ans = 10

The solution matrix, Tmat, has two indices, space and time, and respectively.

>> whos Tmat
 Name Size Bytes Class Attributes
 Tmat 13x2001 208104 double

This command plots the first concentration at the twelfth spatial node for all times.

>> plot(tvec,Tmat(12,:),'k-')

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 11

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400

time (s)

co
nc

en
tr

at
io

n
(m

o/
m

3)

Figure 3. Plot of outlet concentration of A as a function of time.

From Figure 3, we can observe that it takes aobut 200 s for the reactor to reach steady state.

Since this is the case, the steady state profile of the concentration of A in the reactor is the last
curve (corresponding to a time of 2000 s) shown in Figure 2.

We can also examine the fractional yield, which is defined as

%4.64
1000

5.3561000

,

,, 






inA

outAinA
A C

CC
Y

where the inlet concentration of A was specified in a boundary condition as 1000 mol/m3 and the
outlet concentration of A was determined by examining the solution, as follows

>> Tmat(12,2001)
ans = 356.5422

We can also examine the through-put, the amount of product made per hour, i.e. the through-put?

   outAinA
A

B
outBXB CCrvCvAQ ,,

2
, 






D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 12

In the latter equality, we used the stoichiometry of the reaction to relate the amount of B
produced based on the amount of A consumed. For v = 0.1 m/s, 5.356, outAC mol/m3 and

253.0BQ mol/s.

If we rerun the code with half the velocity, v = 0.05 m/s, then 224.7 , outAC mol/m3 and the

fractional yield is %77.5AY and the through-out is 152.0BQ mol/s. So we observe that
slowing the velocity increases the fractional yield but decreases the overall the overall rate of
production of B. There must be an optimal velocity for through-put. One could directly find this
by nesting this PDE solver inside the Newton-Raphson method.

V.B. Using the Inappropriate General Routine

One can use the general code, parapde_1_anyBC.m, which implements the centered-finite
difference formula for the gradients to solve the above plug flow reactor problem, rather than the
version of the code, parapde_1_anyBC_flow.m, in which the backward finite difference
formula is used for the gradients. Doing so results in numerical instabilities, as shown in Figure
4 below.

0 1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

position (m)

co
nc

en
tr

at
io

n
(m

o/
m

3)

Figure 4. Concentration of A along the reactor. Using a centered-finite difference formula in a
flow dominated regime leads to clear numerical instabilities. These instabilities can be reduced
by reductions in time step but cannot be entirely eliminated, except by switching to a backward
finite difference formula.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 13

Appendix I. parapde_1_anyBC.m

function [xvec,tvec,Tmat] = parapde_1_anyBC_hw5p1
%
% The routine parapde_1_anyBC will solve
% a single non-linear 1-D parabolic PDE of the form
%
% dT/dt = f(x,t,T,dTdx,d2Tdx2)
%
% using a second order method
%
% The initial condition must have the form
% IC: T(x,to) = To(x);
%
% The boundary conditions can be
% Dirichlet, Neumann or Mixed of the form
% BC 1: aBCo(t)*T(xo,t) + bBCo(t)*dTdx(xo,t) + cBCo(t) = 0;
% BC 2: aBCf(t)*T(xf,t) + bBCf(t)*dTdx(xf,t) + cBCf(t) = 0;
%
% The necessary functions
% pdefunk(x,t,T,dTdx,d2Tdx2), To(x),
% aBCo(t), bBCo(t), cBCo(t), aBCf(t), bBCf(t), cBCf(t)
% are entered at the bottom of the file
%
% The initial value, final value and discretization in time, t,
% to, tf, and dt must be entered at the top of the file.
%
% The initial value, final value and discretization in space, x,
% xo, xf, and dx must be entered at the top of the file.
%
% The type of boundary conditions 'D', 'N' or 'M'
% for each boundary must be entered at the top of the file.
%
% sample execution:
% [xvec,tvec,Tmat] = parapde_1_anyBC;
%
% code written by: David J. Keffer
% University of Tennessee, dkeffer@utk.edu
% code written: October 21, 2001
% comments last updated: February 26, 2014
%
clear all;
close all;
%
% define type of boundary condition
% Choices are 'D' = Dirichlet, i.e. bBC(t) = 0
% Choices are 'N' = Neumann, i.e. aBC(t) = 0
% Choices are 'M' = Mixed, bBC(t) ~= 0 & aBC(t) ~= 0
%
BC(1) = 'D';
BC(2) = 'N';

% discretize time
to = 0;
tf = 5.0e+3;
dt = 1.0e-1;
tvec = [to:dt:tf];
nt = length(tvec);

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 14

% discretize space
xo = 0;
xf = 0.1;
dx = 5.0e-3;
% include imaginary boundary nodes
xvec = [xo-dx:dx:xf+dx];
nx = length(xvec);
dxi = 1.0/dx;

% dimension solution
Tmat = zeros(nx,nt);

% dimension temporary vectors
Told = zeros(nx,1);
Ttem = zeros(nx,1);
Tnew = zeros(nx,1);

% apply initial conditions to all real nodes
i = 1;
t = tvec(i);
for j = 2:1:nx-1
 Tmat(j,i) = icfunk(xvec(j));
end

% apply Neumann/Mixed BCs as ICs at imaginary nodes
if (BC(1) ~= 'D')
 Tmat(1,i) = 2.0*dx/bBCo(t)*(aBCo(t)*Tmat(2,i) +
bBCo(t)/(2.0*dx)*Tmat(3,i) + cBCo(t));
end
if (BC(2) ~= 'D')
 Tmat(nx,i) = 2.0*dx/bBCf(t)*(-aBCf(t)*Tmat(nx-1,i) +
bBCf(t)/(2.0*dx)*Tmat(nx-2,i) - cBCf(t));
end

%
% Determine, based on type of BC, how to define which nodes are determined by
PDE vs BCs
% ivaro = index of first node to be solved by PDE
% ivarf = index of last node to be solved by PDE
% nvar = number of nodes to be solved by PDE
%
if (BC(1) == 'D')
 ivaro = 3;
else
 ivaro = 2;
end
if (BC(2) == 'D')
 ivarf = nx-2;
else
 ivarf = nx-1;
end
nvar = ivarf - ivaro + 1;

% loop over times
Told(1:nx) = Tmat(1:nx,i);
for i = 2:1:nt
% update time
 told = tvec(i-1);
 t = tvec(i);

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 15

%
% Prediction Step
%

% compute first and second spatial derivatives
 for j = ivaro:1:ivarf
 dTdx(j) = 0.5*(Told(j+1) - Told(j-1))*dxi;
 d2Tdx2(j) = (Told(j+1) - 2.0*Told(j) + Told(j-1))*dxi^2;
 end

% estimate slope at beginning of temporal interval
 for j = ivaro:1:ivarf
 k1(j) = pdefunk(xvec(j),tvec(i),Told(j),dTdx(j),d2Tdx2(j));
 end

% apply Euler method for the prediction step
 for j = ivaro:1:ivarf
 Ttem(j) = Told(j) + dt*k1(j);
 end

% apply BCs at the prediction step
 if (BC(1) == 'D')
 Ttem(2) = -cBCo(t)/aBCo(t);
 else
 Ttem(1) = 2.0*dx/bBCo(t)*(aBCo(t)*Ttem(2) +
bBCo(t)/(2.0*dx)*Ttem(3) + cBCo(t));
 end
 if (BC(2) == 'D')
 Ttem(nx-1) = -cBCf(t)/aBCf(t);
 else
 Ttem(nx) = 2.0*dx/bBCf(t)*(-aBCf(t)*Ttem(nx-1) +
bBCf(t)/(2.0*dx)*Ttem(nx-2) - cBCf(t));
 end

%
% Correction Step
%

% compute first and second spatial derivatives
 for j = ivaro:1:ivarf
 dTdx(j) = 0.5*(Ttem(j+1) - Ttem(j-1))*dxi;
 d2Tdx2(j) = (Ttem(j+1) - 2.0*Ttem(j) + Ttem(j-1))*dxi^2;
 end

% estimate slope at end of temporal interval
 for j = ivaro:1:ivarf
 k2(j) = pdefunk(xvec(j),tvec(i),Ttem(j),dTdx(j),d2Tdx2(j));
 end

% apply second-order method for the correction step
 for j = ivaro:1:ivarf
 Tnew(j) = Told(j) + 0.50*dt*(k1(j)+k2(j));
 end

% apply BCs at the correction step
 if (BC(1) == 'D')
 Tnew(2) = -cBCo(t)/aBCo(t);
 else

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 16

 Tnew(1) = 2.0*dx/bBCo(t)*(aBCo(t)*Tnew(2) +
bBCo(t)/(2.0*dx)*Tnew(3) + cBCo(t));
 end
 if (BC(2) == 'D')
 Tnew(nx-1) = -cBCf(t)/aBCf(t);
 else
 Tnew(nx) = 2.0*dx/bBCf(t)*(-aBCf(t)*Tnew(nx-1) +
bBCf(t)/(2.0*dx)*Tnew(nx-2) - cBCf(t));
 end

% store new temperatures
 Tmat(1:nx,i) = Tnew(1:nx);
 Told(1:nx) = Tnew(1:nx);
end

% plot
figure(1);
nskip = 10;
for i = 1:nskip:nt
 plot(xvec(2:nx-1),Tmat(2:nx-1,i),'k-');
 %pause(1);
 hold on;
end
xlabel('position (m)')
ylabel('Temperature (K)');

%
% functions defining PDE
%

function k = pdefunk(x,t,y,dydx,d2ydx2);
%
Temp = y;
% rho = density [kg/m^3]
rho = 8960.0;
% Cp = heat capacity [J/kg/K]
Cp = 384.6;
% k = thermal conductivity [W/m/K]
k = 401.0;
% alpha = thermal diffusivity
alpha = k/rho/Cp;
% length of rod [m]
L = 0.1;
% diameter in [m]
radius = 0.1;
diameter = 2.0*radius;
% surface Area in [m^2]
Area = pi*diameter*L;
% Volume in [m^3]
Volume = pi/4*diameter^2*L;
% surface area to volume ratio
S = Area/Volume;
% Temperature of the surroundings [K]
Tsurround = 300.0;
% Stefan-Boltzmann constant [J/s/m^2/K^4]
sigma = 5.670373e-8;
% gray body permittivity [dimensionless]
eps = 0.15;
fac = eps*sigma*S/(rho*Cp);

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 17

k = alpha*d2ydx2 - fac*(Temp^4 - Tsurround^4);

%
% function defining initial condition
%

function ic = icfunk(x);
ic = 1000;

%
% functions defining LHS boundary condition
%

function f = aBCo(t);
f = 1;

function f = bBCo(t);
f = 0;

function f = cBCo(t);
f = -1000;

%
% functions defining RHS boundary condition
%

function f = aBCf(t);
f = 0;

function f = bBCf(t);
f = 1;

function f = cBCf(t);
f = 0;

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 18

Appendix II. parapde_1_anyBC_flow.m

function [xvec,tvec,Tmat] = parapde_1_anyBC_flow
%
% The routine parapde_1_anyBC will solve
% a single non-linear 1-D parabolic PDE of the form
%
% dT/dt = f(x,t,T,dTdx,d2Tdx2)
%
% where the convection term dominates,
% using a second order method.
%
% The initial condition must have the form
% IC: T(x,to) = To(x);
%
% The boundary conditions can be
% Dirichlet, Neumann or Mixed of the form
% BC 1: aBCo(t)*T(xo,t) + bBCo(t)*dTdx(xo,t) + cBCo(t) = 0;
% BC 2: aBCf(t)*T(xf,t) + bBCf(t)*dTdx(xf,t) + cBCf(t) = 0;
%
% The necessary functions
% pdefunk(x,t,T,dTdx,d2Tdx2), To(x),
% aBCo(t), bBCo(t), cBCo(t), aBCf(t), bBCf(t), cBCf(t)
% are entered at the bottom of the file
%
% The initial value, final value and discretization in time, t,
% to, tf, and dt must be entered at the top of the file.
%
% The initial value, final value and discretization in space, x,
% xo, xf, and dx must be entered at the top of the file.
%
% The type of boundary conditions 'D', 'N' or 'M'
% for each boundary must be entered at the top of the file.
%
% sample execution:
% [xvec,tvec,Tmat] = parapde_1_anyBC;
%
% code written by: David J. Keffer
% University of Tennessee, dkeffer@utk.edu
% code written: October 21, 2001
% comments last updated: February 26, 2014
%
clear all;
close all;
%
% define type of boundary condition
% Choices are 'D' = Dirichlet, i.e. bBC(t) = 0
% Choices are 'N' = Neumann, i.e. aBC(t) = 0
% Choices are 'M' = Mixed, bBC(t) ~= 0 & aBC(t) ~= 0
%
BC(1) = 'D';
BC(2) = 'N';

% discretize time
to = 0;
tf = 2.0e+3;
dt = 1.0e-1;
tvec = [to:dt:tf];
nt = length(tvec);

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 19

% discretize space
xo = 0;
xf = 10.0;
dx = 1.0e-0;
% include imaginary boundary nodes
xvec = [xo-dx:dx:xf+dx];
nx = length(xvec);
dxi = 1.0/dx;

% dimension solution
Tmat = zeros(nx,nt);

% dimension temporary vectors
Told = zeros(nx,1);
Ttem = zeros(nx,1);
Tnew = zeros(nx,1);

% apply initial conditions to all real nodes
i = 1;
t = tvec(i);
for j = 2:1:nx-1
 Tmat(j,i) = icfunk(xvec(j));
end

% apply Neumann/Mixed BCs as ICs at imaginary nodes
if (BC(1) ~= 'D')
 %Tmat(1,i) = 2.0*dx/bBCo(t)*(aBCo(t)*Tmat(2,i) +
bBCo(t)/(2.0*dx)*Tmat(3,i) + cBCo(t));
 Tmat(1,i) = dx/bBCo(t)*(aBCo(t)*Tmat(2,i) + bBCo(t)/(
dx)*Tmat(2,i) + cBCo(t));
end
if (BC(2) ~= 'D')
 %Tmat(nx,i) = 2.0*dx/bBCf(t)*(-aBCf(t)*Tmat(nx-1,i) +
bBCf(t)/(2.0*dx)*Tmat(nx-2,i) - cBCf(t));
 Tmat(nx,i) = dx/bBCf(t)*(-aBCf(t)*Tmat(nx-1,i) + bBCf(t)/(
dx)*Tmat(nx-1,i) - cBCf(t));
end

%
% Determine, based on type of BC, how to define which nodes are determined by
PDE vs BCs
% ivaro = index of first node to be solved by PDE
% ivarf = index of last node to be solved by PDE
% nvar = number of nodes to be solved by PDE
%
if (BC(1) == 'D')
 ivaro = 3;
else
 ivaro = 2;
end
if (BC(2) == 'D')
 ivarf = nx-2;
else
 ivarf = nx-1;
end
nvar = ivarf - ivaro + 1;

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 20

% loop over times
Told(1:nx) = Tmat(1:nx,i);
for i = 2:1:nt
% update time
 told = tvec(i-1);
 t = tvec(i);

%
% Prediction Step
%

% compute first and second spatial derivatives
 for j = ivaro:1:ivarf
 %dTdx(j) = 0.5*(Told(j+1) - Told(j-1))*dxi;
 dTdx(j) = (Told(j) - Told(j-1))*dxi;
 d2Tdx2(j) = (Told(j+1) - 2.0*Told(j) + Told(j-1))*dxi^2;
 end

% estimate slope at beginning of temporal interval
 for j = ivaro:1:ivarf
 k1(j) = pdefunk(xvec(j),tvec(i),Told(j),dTdx(j),d2Tdx2(j));
 end

% apply Euler method for the prediction step
 for j = ivaro:1:ivarf
 Ttem(j) = Told(j) + dt*k1(j);
 end

% apply BCs at the prediction step
 if (BC(1) == 'D')
 Ttem(2) = -cBCo(t)/aBCo(t);
 else
 %Ttem(1) = 2.0*dx/bBCo(t)*(aBCo(t)*Ttem(2) +
bBCo(t)/(2.0*dx)*Ttem(3) + cBCo(t));
 Ttem(1) = dx/bBCo(t)*(aBCo(t)*Ttem(2) + bBCo(t)/(
dx)*Ttem(2) + cBCo(t));
 end
 if (BC(2) == 'D')
 Ttem(nx-1) = -cBCf(t)/aBCf(t);
 else
 %Ttem(nx) = 2.0*dx/bBCf(t)*(-aBCf(t)*Ttem(nx-1) +
bBCf(t)/(2.0*dx)*Ttem(nx-2) - cBCf(t));
 Ttem(nx) = dx/bBCf(t)*(-aBCf(t)*Ttem(nx-1) + bBCf(t)/(dx)*Ttem(nx-1) -
cBCf(t));
 end

%
% Correction Step
%

% compute first and second spatial derivatives
 for j = ivaro:1:ivarf
 %dTdx(j) = 0.5*(Ttem(j+1) - Ttem(j-1))*dxi;
 dTdx(j) = (Ttem(j) - Ttem(j-1))*dxi;
 d2Tdx2(j) = (Ttem(j+1) - 2.0*Ttem(j) + Ttem(j-1))*dxi^2;
 end

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 21

% estimate slope at end of temporal interval
 for j = ivaro:1:ivarf
 k2(j) = pdefunk(xvec(j),tvec(i),Ttem(j),dTdx(j),d2Tdx2(j));
 end

% apply second-order method for the correction step
 for j = ivaro:1:ivarf
 Tnew(j) = Told(j) + 0.50*dt*(k1(j)+k2(j));
 end

% apply BCs at the correction step
 if (BC(1) == 'D')
 Tnew(2) = -cBCo(t)/aBCo(t);
 else
 %Tnew(1) = 2.0*dx/bBCo(t)*(aBCo(t)*Tnew(2) +
bBCo(t)/(2.0*dx)*Tnew(3) + cBCo(t));
 Tnew(1) = dx/bBCo(t)*(aBCo(t)*Tnew(2) + bBCo(t)/(
dx)*Tnew(2) + cBCo(t));
 end
 if (BC(2) == 'D')
 Tnew(nx-1) = -cBCf(t)/aBCf(t);
 else
 %Tnew(nx) = 2.0*dx/bBCf(t)*(-aBCf(t)*Tnew(nx-1) +
bBCf(t)/(2.0*dx)*Tnew(nx-2) - cBCf(t));
 Tnew(nx) = dx/bBCf(t)*(-aBCf(t)*Tnew(nx-1) + bBCf(t)/(dx)*Tnew(nx-1) -
cBCf(t));
 end

% store new temperatures
 Tmat(1:nx,i) = Tnew(1:nx);
 Told(1:nx) = Tnew(1:nx);
end

% plot
figure(1);
nskip = 100;
for i = 1:nskip:nt
 plot(xvec(2:nx-1),Tmat(2:nx-1,i),'k-');
 pause(1/5);
 %hold on;
end
xlabel('position (m)')
ylabel('Temperature (K)');

%
% functions defining PDE
%

function dydt = pdefunk(x,t,y,dydx,d2ydx2);
% molar concentrations [mol/m^3]
CA = y(1);
% velocity [m/s]
v = 0.1;
% diffusivity [m^2/s]
D = 1.0e-9;
% rate constant [m^6/mol^2/s]
k = 1.0e-5;

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 22

% stoichiometric coefficients
nuA = -2.0;
% reaction rate [mol/m^3/s]
rate = k*CA^2;
dydt = -v*dydx + D*d2ydx2 + nuA*rate;

%
% function defining initial condition
%

function ic = icfunk(x);
ic = 0;

%
% functions defining LHS boundary condition
%

function f = aBCo(t);
f = 1;

function f = bBCo(t);
f = 0;

function f = cBCo(t);
f = -1000;

%
% functions defining RHS boundary condition
%

function f = aBCf(t);
f = 0;

function f = bBCf(t);
f = 1;

function f = cBCf(t);
f = 0;

