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I.  Formulation 
 
Nonlinear parabolic partial differential equations are, in their most general form, given by: 
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An example of this is the general form of the linear parabolic PDE, which we solved in the last 
section. 
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Another example is  
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Because equation (3) is no longer linear in the temperature and its derivatives, the techniques for 
solving linear parabolic PDEs, e.g. the Crank-Nicolson method no longer apply.   We cannot 
reduce equation (3) to a discrete system of linear equations.   
 Instead we shall use an approach that is essentially Heun’s method, a second order method, 
for solving systems of ODEs.  The extension to PDEs is straightforward since we will transform 
the PDE to a system of ODEs through the use of finite-difference formulae for the gradient and 
Laplacian.   
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II.  Method Formulation for General Systems  
 
 This section provides a derivation of the second-order finite difference equations for 
nonlinear parabolic PDEs 
 Let j superscripts designate temporal increments and let i subscripts designate spatial 
increments.  For purposes of brevity only, we will consider the case with variation only in one 
spatial dimension.  Our most general parabolic PDE becomes in one spatial dimension 
 

 ),,,,(
t

2TTTtxK
T





         (1) 

 
Looking at it in this light, we can obtain a new estimate of the temperature, one increment ahead 
in time, namely 
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This statement is true at any given point i in space.  It is a can make a forward finite difference 
formula of the partial derivative with respect to time.  In the second-order method, we will 
approximate the slope with the average of two functional evaluations of the PDE, one at the 
beginning of the interval and one at the end. 
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so that: 
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The problem here is that we have no way of determining 1j

iT , which is used as an argument in 
1j

iK  unless we rely on a costly and inefficient method for finding the roots of a system of non-

linear algebraic equations at each time iteration.  This method is, of course, an option, but if we 
only want second order accuracy in our model, there are other, easier ways to get it. 
 We can estimate (or predict) the value of the new temperature using the Euler method,  
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With this prediction, we can evaluate 1j
iK .  Once we know, 1j

iK , we can use Heun’s method 

(equation (6)) to correct the new value of the temperature. 
 It is important to remember that these j

iK  are functions not only of j
iT  but of the 

temperature at all spatial points  jT .  So we have to solve a system of ODEs simultaneously, 

which we have now done many times in this course.   
 Also, we need to recognize that the gradients and Laplacians inside j

iK  must be evaluated 

using the same finite difference formulae as were used in the linear case, namely: 
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and 
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A code that implements this routine, parapde_1_anyBC.m, is provided in Appendix 1 below. 
 
III.  Heat Transfer Application 
 
 The one-dimensional heat equation can describe heat transfer in a material with both heat 
conduction and radiative heat loss. 
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The radiative heat loss term involves temperature to the fourth power and is therefore nonlinear.  
Consider a cylindrical Cu rod of diameter 0.01 m and length 0.1 mm, which is initially at 

1000)0,( tzT  K.  One end of the rod is maintained at 1000),0(  tzT K, a Dirichlet 

boundary condition.  The other end of the rod is insulated, 0
1.0


zdz

dT
 K/m, a Neumann 

boundary condition.   
In this problem, we will employ the following units and numerical values for parameters. 
 ●  temperature in the material T [K] 
 ●  surrounding temperature 300sT  [K] 

 ●  axial position along material z [m] 
 ●  thermal conductivity k 401 [J/K/m/s] (for Cu) 
 ●  mass density   8960 [kg/m3] (for Cu) 

 ●  heat capacity 6.384pC  [J/kg/K] (for Cu) 
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 ●  Stefan–Boltzmann constant 8105.670373  x  [J/s/m2/K4] 
 ●  gray body permittivity 15.0  (for dull Cu) 
 ●  surface area to volume ratio 200S  [m-1] (for a cylindrical rod of diameter 0.01 m) 
 
This is a single non-linear parabolic PDE with one spatial dimension and a Dirichlet boundary 
condition at z=0 and a Neumann boundary condition at z=0.1.  To solve this problem, I will use 
the code parapde_1_anyBC.m. 
 
I modified the input functions in parapde_1_anyBC.m as follows. 
 
I assigned the appropriate type of boundary conditions. 
 
BC(1) = 'D'; 
BC(2) = 'N'; 
 
I set the final time to 100 seconds and chose dt to be 0.1 seconds, so I had 1000 temporal 
intervals. 
 
% discretize time 
to = 0; 
tf = 1.0e+2; 
dt = 1.0e-1; 
 
The rod spans from 0 to 0.1 meter.  I set dx to be 0.005 m, so I had 20 spatial intervals. 
 
% discretize space 
xo = 0; 
xf = 0.1; 
dx = 5.0e-3; 
 
I defined the PDE in the following function.   
  
% 
%  function defining PDE 
% 
function k = pdefunk(x,t,y,dydx,d2ydx2); 
% 
Temp = y; 
% rho = density [kg/m^3] 
rho = 8960.0; 
% Cp = heat capacity [J/kg/K] 
Cp = 384.6; 
% k = thermal conductivity [W/m/K] 
k = 401.0; 
%  alpha = thermal diffusivity 
alpha = k/rho/Cp; 
% length of rod [m] 
L = 0.1; 
% diameter in [m] 
radius = 0.1; 
diameter = 2.0*radius; 
% surface Area in [m^2] 
Area = pi*diameter*L; 
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% Volume in [m^3] 
Volume = pi/4*diameter^2*L; 
% surface area to volume ratio 
S = Area/Volume; 
%  Temperature of the surroundings [K] 
Tsurround = 300.0; 
% Stefan-Boltzmann constant [J/s/m^2/K^4] 
sigma = 5.670373e-8; 
% gray body permittivity [dimensionless] 
eps = 0.15; 
fac = eps*sigma*S/(rho*Cp); 
k = alpha*d2ydx2 - fac*(Temp^4 - Tsurround^4); 
 
I defined the IC and BCs in the functions below. 
 
% 
%  function defining initial condition 
% 
  
function ic = icfunk(x); 
ic = 1000; 
  
% 
%  functions defining LHS boundary condition 
% 
  
function f = aBCo(t); 
f = 1; 
  
function f = bBCo(t); 
f = 0; 
  
function f = cBCo(t); 
f = -1000; 
  
% 
%  functions defining RHS boundary condition 
% 
 
function f = aBCf(t); 
f = 0; 
  
function f = bBCf(t); 
f = 1; 
  
function f = cBCf(t); 
f = 0; 
 
At the command line prompt, I typed 
 
[xvec,tvec,Tmat] = parapde_1_anyBC; 
 
 This command generated the plot shown in Figure 1.   
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To find the last value at x = 0.1 m, I confirmed that I knew the correct spatial and temporal 
indices. 
 
>> xvec(22) 
ans =    0.1000 
 
>> tvec(1001) 
ans =   100 
 
>> Tmat(22,1001) 
ans =  998.0308 
 
Therefore the temperature at the end at 100 seconds is 998.03 K. 
 
I don’t know that this is steady state.  I can run the simulation longer.  If I change nothing but the 
final time to 1000 seconds, then I generate the data point 
 
>> Tmat(22,10001) 
ans =  997.9108 
 
Therefore the temperature at the end at 1000 seconds is 997.91 K. 
The two answers agree to three digits, so we are pretty close to the steady state solution, but we 
can run for a longer time.   If I change nothing but the final time to 5000 seconds, then I generate 
the data point 
 
>> Tmat(22,50001) 
ans =  997.9108 
 
Therefore the temperature at the end at 5000 seconds is 997.91 K. 
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Figure 1.  Transient behavior of a rod with radiative heat loss.
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IV.  Method Formulation for Systems Dominated by Convection (Flow) 
 
It turns out that if you apply this code to a flowing system, that the algorithm is unstable, as will 
be demonstrated in the following section.  A simple modification to the code removes this 
instability.   
 
If the velocity is positive, then flowing material or energy moves from left to right.  This 
introduces an asymmetry in the problem that is not well handled by the centered-finite difference 
formula.  Therefore, we replace the centered-finite-difference formula with the backward finite 
difference formula. 
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The formula for the Laplacian is left alone.  This change will allow the code to be stable when 
describing convection-dominated systems.   
 
A code that implements this routine, parapde_1_anyBC_flow.m, is provided in Appendix 2 
below. 
 
An example of a convection dominated problem using both codes is provided in the next section. 
 
V.  Plug Flow Reactor Application 
 
V.A.  Using the Appropriate Flow-Dominated Routine 
 
 Consider a plug flow reactor.  (This is a pipe with a reaction taking place in the fluid flowing 
inside it.  Consider the irreversible reaction  
 
 BA 2  
 
taking place in a non-reactive solvent. 
 
The molar balance for component A is given by  
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where z is the spatial dimension in the axial direction, t is time, CA is the molar concentration of 
species A, v is the axial velocity, D is the diffusion coefficient,  A is the stochiometric for 
species A, (namely -2) and r is the reaction rate.  The reaction rate is given by  
 
 2

AkCr   
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where k is the rate constant.  Assume the reactor is operated isothermally so we have no need for 
an energy balance.  Since the reaction is second order, the PDE is nonlinear. 
 
The pipe is 10 m long with a diameter of  0.1 m.  The velocity is 0.1 m/s.  The diffusivity is 

1.0x10-9 m2/s.  The rate constant is 
smol

m
xk


 

3
7101 .  Initially, the pipe contains nothing but 

solvent.  At the inlet, A is fed in at 1000.0 mol/m3 respectively.  No B is present in the feed 
stream.  At the outlet, assume the concentrations no longer change (i.e. a no flux boundary 
condition). 
 
In this case, we can examine the reactor, strictly through the molar balance on A, since the PDE 
is not coupled to any other material or energy balances.  This is a single non-linear parabolic 
PDEs with one spatial dimension and Dirichlet boundary conditions at z=0 and a Neumann 
boundary conditions at z=10 m.  Moreover, this is a system in which convection is dominant.  
Therefore, to solve this problem, I will use the code parapde_1_anyBC_flow.m. 
 
I modified the input functions in parapde_1_anyBC.m as follows. 
 
I assigned the appropriate type of boundary conditions. 
 
BC(1,1) = 'D'; 
BC(2,1) = 'N'; 
 
I set the final time to 2000 seconds and chose dt to be 1 seconds, so I had 2000 temporal 
intervals. 
 
% discretize time 
to = 0; 
tf = 2.0e+3; 
dt = 1.0e+0; 
 
The rod spans from 0 to 10 meters.  I set dx to be 1 m, so I had 10 spatial intervals. 
 
% discretize space 
xo = 0; 
xf = 10.0; 
dx = 1.0e-0; 
 
I defined the PDE in the following function.   
  
function dydt = pdefunk(x,t,y,dydx,d2ydx2); 
% molar concentrations [mol/m^3] 
CA = y(1); 
% velocity [m/s] 
v = 0.1; 
% diffusivity [m^2/s] 
D = 1.0e-9; 
%  rate constant [m^6/mol^2/s] 
k = 1.0e-5; 
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% stoichiometric coefficients 
nuA = -2.0; 
% reaction rate [mol/m^3/s] 
rate = k*CA^2; 
dydt = -v*dydx + D*d2ydx2 + nuA*rate; 
 
I defined the IC and BCs in the functions below. 
 
% 
%  function defining initial condition 
% 
  
function ic = icfunk(x); 
ic = 0; 
  
% 
%  functions defining LHS boundary condition 
% 
  
function f = aBCo(t); 
f = 1; 
  
function f = bBCo(t); 
f = 0; 
  
function f = cBCo(t); 
f = -1000; 
  
% 
%  functions defining RHS boundary condition 
% 
  
function f = aBCf(t); 
f = 0; 
  
  
function f = bBCf(t); 
f = 1; 
  
function f = cBCf(t); 
f = 0; 
 
At the command line prompt, I typed 
 
[xvec,tvec,Tmat] = parapde_1_anyBC_flow; 
 
 This command generated the plot shown in Figure 2. 
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Figure 2.  Transient behavior of concentration of A in a plug flow reactor. 
 
Interesting problems relating to the domain science of reaction engineering can be answered 
using this model.  For example, we can estimate how long it takes this reactor to get to steady 
state.  If a pipe (plug flow reactor) is L = 10 m long and the velocity is 0.1 m/s, then the 

“residence time of the reactor” is given by 
v

L
 , (100 s in this example) which sets a lower 

bound for reaching steady state.  Maybe it takes two residence times to reach steady state.  We 
can examine the concentration of A at the outlet as a function of time.  To do so, first, we make 
sure that we are plotting the correct variables. 
 
The twelfth spatial index is the end of the pipe. 
 
>> xvec(12) 
ans =    10 
 
The solution matrix, Tmat, has two indices, space and time, and respectively. 
 
>> whos Tmat 
  Name       Size               Bytes  Class     Attributes 
  Tmat      13x2001            208104  double   
 
This command plots the first concentration at the twelfth spatial node for all times.  
 
>> plot(tvec,Tmat(12,:),'k-') 
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Figure 3.  Plot of outlet concentration of A as a function of time.   
 
From Figure 3, we can observe that it takes aobut 200 s for the reactor to reach steady state. 
 
Since this is the case, the steady state profile of the concentration of A in the reactor is the last 
curve (corresponding to a time of 2000 s) shown in Figure 2.   
 
We can also examine the fractional yield, which is defined as  
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where the inlet concentration of A was specified in a boundary condition as 1000 mol/m3 and the 
outlet concentration of A was determined by examining the solution, as follows 
 
>> Tmat(12,2001) 
ans =  356.5422 
 
We can also examine the through-put, the amount of product made per hour, i.e. the through-put? 
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In the latter equality, we used the stoichiometry of the reaction to relate the amount of B 
produced based on the amount of A consumed.  For v = 0.1 m/s, 5.356, outAC  mol/m3 and 

253.0BQ  mol/s.  
 
If we rerun the code with half the velocity, v = 0.05 m/s, then  224.7 , outAC  mol/m3 and the 

fractional yield is %77.5AY  and the through-out is 152.0BQ  mol/s.  So we observe that 
slowing the velocity increases the fractional yield but decreases the overall the overall rate of 
production of B.  There must be an optimal velocity for through-put.  One could directly find this 
by nesting this PDE solver inside the Newton-Raphson method. 
 
V.B.  Using the Inappropriate General Routine 
 
One can use the general code, parapde_1_anyBC.m, which implements the centered-finite 
difference formula for the gradients to solve the above plug flow reactor problem, rather than the 
version of the code, parapde_1_anyBC_flow.m, in which the backward finite difference 
formula is used for the gradients.  Doing so results in numerical instabilities, as shown in Figure 
4 below. 
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Figure 4.  Concentration of A along the reactor.  Using a centered-finite difference formula in a 
flow dominated regime leads to clear numerical instabilities.  These instabilities can be reduced 
by reductions in time step but cannot be entirely eliminated, except by switching to a backward 
finite difference formula. 
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Appendix I.  parapde_1_anyBC.m 
 
function [xvec,tvec,Tmat] = parapde_1_anyBC_hw5p1 
% 
%  The routine parapde_1_anyBC will solve  
%  a single non-linear 1-D parabolic PDE of the form 
% 
%  dT/dt = f(x,t,T,dTdx,d2Tdx2) 
% 
%  using a second order method 
% 
%  The initial condition must have the form 
%  IC:  T(x,to) = To(x); 
% 
%  The boundary conditions can be 
%  Dirichlet, Neumann or Mixed of the form 
%  BC 1:  aBCo(t)*T(xo,t) + bBCo(t)*dTdx(xo,t) + cBCo(t) = 0; 
%  BC 2:  aBCf(t)*T(xf,t) + bBCf(t)*dTdx(xf,t) + cBCf(t) = 0; 
% 
%  The necessary functions 
%  pdefunk(x,t,T,dTdx,d2Tdx2), To(x), 
%  aBCo(t), bBCo(t), cBCo(t), aBCf(t), bBCf(t), cBCf(t)  
%  are entered at the bottom of the file 
% 
%  The initial value, final value and discretization in time, t,  
%  to, tf, and dt must be entered at the top of the file. 
% 
%  The initial value, final value and discretization in space, x, 
%  xo, xf, and dx must be entered at the top of the file. 
% 
%  The type of boundary conditions 'D', 'N' or 'M' 
%  for each boundary must be entered at the top of the file. 
% 
%  sample execution: 
%  [xvec,tvec,Tmat] = parapde_1_anyBC; 
% 
%  code written by:  David J. Keffer 
%  University of Tennessee, dkeffer@utk.edu 
%  code written:  October 21, 2001 
%  comments last updated:  February 26, 2014 
% 
clear all; 
close all; 
% 
%  define type of boundary condition 
%  Choices are 'D' = Dirichlet, i.e. bBC(t) = 0 
%  Choices are 'N' = Neumann, i.e. aBC(t) = 0 
%  Choices are 'M' = Mixed, bBC(t) ~= 0 & aBC(t) ~= 0 
% 
BC(1) = 'D'; 
BC(2) = 'N'; 
  
% discretize time 
to = 0; 
tf = 5.0e+3; 
dt = 1.0e-1; 
tvec = [to:dt:tf]; 
nt = length(tvec); 
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% discretize space 
xo = 0; 
xf = 0.1; 
dx = 5.0e-3; 
% include imaginary boundary nodes  
xvec = [xo-dx:dx:xf+dx]; 
nx = length(xvec); 
dxi = 1.0/dx; 
  
% dimension solution 
Tmat = zeros(nx,nt); 
  
  
% dimension temporary vectors 
Told = zeros(nx,1); 
Ttem = zeros(nx,1); 
Tnew = zeros(nx,1); 
  
% apply initial conditions to all real nodes 
i = 1; 
t = tvec(i); 
for j = 2:1:nx-1 
    Tmat(j,i) = icfunk(xvec(j)); 
end 
  
% apply Neumann/Mixed BCs as ICs at imaginary nodes 
if (BC(1) ~= 'D') 
   Tmat(1,i) =  2.0*dx/bBCo(t)*( aBCo(t)*Tmat(2,i)    + 
bBCo(t)/(2.0*dx)*Tmat(3,i)    + cBCo(t));  
end 
if (BC(2) ~= 'D') 
   Tmat(nx,i) = 2.0*dx/bBCf(t)*(-aBCf(t)*Tmat(nx-1,i) + 
bBCf(t)/(2.0*dx)*Tmat(nx-2,i) - cBCf(t)); 
end 
  
% 
%  Determine, based on type of BC, how to define which nodes are determined by 
PDE vs BCs 
%  ivaro = index of first node to be solved by PDE  
%  ivarf = index of last node to be solved by PDE  
%  nvar = number of nodes to be solved by PDE 
% 
if (BC(1) == 'D')  
   ivaro = 3; 
else 
   ivaro = 2; 
end 
if (BC(2) == 'D')  
   ivarf = nx-2; 
else 
   ivarf = nx-1; 
end 
nvar = ivarf - ivaro + 1; 
  
% loop over times 
Told(1:nx) = Tmat(1:nx,i); 
for i = 2:1:nt 
%  update time 
   told = tvec(i-1); 
   t = tvec(i); 
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% 
%  Prediction Step 
% 
  
%  compute first and second spatial derivatives 
   for j = ivaro:1:ivarf 
       dTdx(j) = 0.5*( Told(j+1) - Told(j-1) )*dxi; 
       d2Tdx2(j) = ( Told(j+1) - 2.0*Told(j) + Told(j-1) )*dxi^2; 
   end 
  
% estimate slope  at beginning of temporal interval  
   for j = ivaro:1:ivarf 
       k1(j) = pdefunk(xvec(j),tvec(i),Told(j),dTdx(j),d2Tdx2(j)); 
   end 
  
% apply Euler method for the prediction step 
   for j = ivaro:1:ivarf 
       Ttem(j) = Told(j) + dt*k1(j); 
   end 
  
%  apply BCs at the prediction step 
   if (BC(1) == 'D')  
      Ttem(2) = -cBCo(t)/aBCo(t); 
   else 
      Ttem(1) =  2.0*dx/bBCo(t)*( aBCo(t)*Ttem(2)    + 
bBCo(t)/(2.0*dx)*Ttem(3)    + cBCo(t));  
   end 
   if (BC(2) == 'D')  
      Ttem(nx-1) = -cBCf(t)/aBCf(t); 
   else 
      Ttem(nx) = 2.0*dx/bBCf(t)*(-aBCf(t)*Ttem(nx-1) + 
bBCf(t)/(2.0*dx)*Ttem(nx-2) - cBCf(t));   
   end 
    
% 
%  Correction Step 
% 
  
%  compute first and second spatial derivatives 
   for j = ivaro:1:ivarf 
       dTdx(j) = 0.5*( Ttem(j+1) - Ttem(j-1) )*dxi; 
       d2Tdx2(j) = ( Ttem(j+1) - 2.0*Ttem(j) + Ttem(j-1) )*dxi^2; 
   end 
  
% estimate slope  at end of temporal interval  
   for j = ivaro:1:ivarf 
       k2(j) = pdefunk(xvec(j),tvec(i),Ttem(j),dTdx(j),d2Tdx2(j)); 
   end 
  
% apply second-order method for the correction step 
   for j = ivaro:1:ivarf 
       Tnew(j) = Told(j) + 0.50*dt*(k1(j)+k2(j)); 
   end 
  
%  apply BCs at the correction step 
   if (BC(1) == 'D')  
      Tnew(2) = -cBCo(t)/aBCo(t); 
   else 
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      Tnew(1) =  2.0*dx/bBCo(t)*( aBCo(t)*Tnew(2)    + 
bBCo(t)/(2.0*dx)*Tnew(3)    + cBCo(t));  
   end 
   if (BC(2) == 'D')  
      Tnew(nx-1) = -cBCf(t)/aBCf(t); 
   else 
      Tnew(nx) = 2.0*dx/bBCf(t)*(-aBCf(t)*Tnew(nx-1) + 
bBCf(t)/(2.0*dx)*Tnew(nx-2) - cBCf(t));   
   end 
    
% store new temperatures 
   Tmat(1:nx,i) = Tnew(1:nx); 
   Told(1:nx) = Tnew(1:nx); 
end 
  
% plot 
figure(1); 
nskip = 10; 
for i = 1:nskip:nt 
   plot(xvec(2:nx-1),Tmat(2:nx-1,i),'k-'); 
   %pause(1); 
   hold on; 
end 
xlabel('position (m)') 
ylabel('Temperature (K)'); 
  
  
% 
%  functions defining PDE 
% 
  
function k = pdefunk(x,t,y,dydx,d2ydx2); 
% 
Temp = y; 
% rho = density [kg/m^3] 
rho = 8960.0; 
% Cp = heat capacity [J/kg/K] 
Cp = 384.6; 
% k = thermal conductivity [W/m/K] 
k = 401.0; 
%  alpha = thermal diffusivity 
alpha = k/rho/Cp; 
% length of rod [m] 
L = 0.1; 
% diameter in [m] 
radius = 0.1; 
diameter = 2.0*radius; 
% surface Area in [m^2] 
Area = pi*diameter*L; 
% Volume in [m^3] 
Volume = pi/4*diameter^2*L; 
% surface area to volume ratio 
S = Area/Volume; 
%  Temperature of the surroundings [K] 
Tsurround = 300.0; 
% Stefan-Boltzmann constant [J/s/m^2/K^4] 
sigma = 5.670373e-8; 
% gray body permittivity [dimensionless] 
eps = 0.15; 
fac = eps*sigma*S/(rho*Cp); 
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k = alpha*d2ydx2 - fac*(Temp^4 - Tsurround^4); 
  
  
% 
%  function defining initial condition 
% 
  
function ic = icfunk(x); 
ic = 1000; 
  
% 
%  functions defining LHS boundary condition 
% 
  
function f = aBCo(t); 
f = 1; 
  
function f = bBCo(t); 
f = 0; 
  
function f = cBCo(t); 
f = -1000; 
  
% 
%  functions defining RHS boundary condition 
% 
  
function f = aBCf(t); 
f = 0; 
  
function f = bBCf(t); 
f = 1; 
  
function f = cBCf(t); 
f = 0; 
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Appendix II.  parapde_1_anyBC_flow.m 
 
function [xvec,tvec,Tmat] = parapde_1_anyBC_flow 
% 
%  The routine parapde_1_anyBC will solve  
%  a single non-linear 1-D parabolic PDE of the form 
% 
%  dT/dt = f(x,t,T,dTdx,d2Tdx2) 
% 
%  where the convection term dominates,  
%  using a second order method. 
% 
%  The initial condition must have the form 
%  IC:  T(x,to) = To(x); 
% 
%  The boundary conditions can be 
%  Dirichlet, Neumann or Mixed of the form 
%  BC 1:  aBCo(t)*T(xo,t) + bBCo(t)*dTdx(xo,t) + cBCo(t) = 0; 
%  BC 2:  aBCf(t)*T(xf,t) + bBCf(t)*dTdx(xf,t) + cBCf(t) = 0; 
% 
%  The necessary functions 
%  pdefunk(x,t,T,dTdx,d2Tdx2), To(x), 
%  aBCo(t), bBCo(t), cBCo(t), aBCf(t), bBCf(t), cBCf(t)  
%  are entered at the bottom of the file 
% 
%  The initial value, final value and discretization in time, t,  
%  to, tf, and dt must be entered at the top of the file. 
% 
%  The initial value, final value and discretization in space, x, 
%  xo, xf, and dx must be entered at the top of the file. 
% 
%  The type of boundary conditions 'D', 'N' or 'M' 
%  for each boundary must be entered at the top of the file. 
% 
%  sample execution: 
%  [xvec,tvec,Tmat] = parapde_1_anyBC; 
% 
%  code written by:  David J. Keffer 
%  University of Tennessee, dkeffer@utk.edu 
%  code written:  October 21, 2001 
%  comments last updated:  February 26, 2014 
% 
clear all; 
close all; 
% 
%  define type of boundary condition 
%  Choices are 'D' = Dirichlet, i.e. bBC(t) = 0 
%  Choices are 'N' = Neumann, i.e. aBC(t) = 0 
%  Choices are 'M' = Mixed, bBC(t) ~= 0 & aBC(t) ~= 0 
% 
BC(1) = 'D'; 
BC(2) = 'N'; 
  
% discretize time 
to = 0; 
tf = 2.0e+3; 
dt = 1.0e-1; 
tvec = [to:dt:tf]; 
nt = length(tvec); 
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% discretize space 
xo = 0; 
xf = 10.0; 
dx = 1.0e-0; 
% include imaginary boundary nodes  
xvec = [xo-dx:dx:xf+dx]; 
nx = length(xvec); 
dxi = 1.0/dx; 
  
% dimension solution 
Tmat = zeros(nx,nt); 
  
  
% dimension temporary vectors 
Told = zeros(nx,1); 
Ttem = zeros(nx,1); 
Tnew = zeros(nx,1); 
  
% apply initial conditions to all real nodes 
i = 1; 
t = tvec(i); 
for j = 2:1:nx-1 
    Tmat(j,i) = icfunk(xvec(j)); 
end 
  
% apply Neumann/Mixed BCs as ICs at imaginary nodes 
if (BC(1) ~= 'D') 
   %Tmat(1,i) =  2.0*dx/bBCo(t)*( aBCo(t)*Tmat(2,i)    + 
bBCo(t)/(2.0*dx)*Tmat(3,i)    + cBCo(t));  
   Tmat(1,i) =       dx/bBCo(t)*( aBCo(t)*Tmat(2,i)    + bBCo(t)/(    
dx)*Tmat(2,i)    + cBCo(t));  
end 
if (BC(2) ~= 'D') 
   %Tmat(nx,i) = 2.0*dx/bBCf(t)*(-aBCf(t)*Tmat(nx-1,i) + 
bBCf(t)/(2.0*dx)*Tmat(nx-2,i) - cBCf(t)); 
    Tmat(nx,i) =     dx/bBCf(t)*(-aBCf(t)*Tmat(nx-1,i) + bBCf(t)/(    
dx)*Tmat(nx-1,i) - cBCf(t)); 
end 
  
% 
%  Determine, based on type of BC, how to define which nodes are determined by 
PDE vs BCs 
%  ivaro = index of first node to be solved by PDE  
%  ivarf = index of last node to be solved by PDE  
%  nvar = number of nodes to be solved by PDE 
% 
if (BC(1) == 'D')  
   ivaro = 3; 
else 
   ivaro = 2; 
end 
if (BC(2) == 'D')  
   ivarf = nx-2; 
else 
   ivarf = nx-1; 
end 
nvar = ivarf - ivaro + 1; 
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% loop over times 
Told(1:nx) = Tmat(1:nx,i); 
for i = 2:1:nt 
%  update time 
   told = tvec(i-1); 
   t = tvec(i); 
  
% 
%  Prediction Step 
% 
  
%  compute first and second spatial derivatives 
   for j = ivaro:1:ivarf 
       %dTdx(j) = 0.5*( Told(j+1) - Told(j-1) )*dxi; 
       dTdx(j) = ( Told(j) - Told(j-1) )*dxi; 
       d2Tdx2(j) = ( Told(j+1) - 2.0*Told(j) + Told(j-1) )*dxi^2; 
   end 
  
% estimate slope  at beginning of temporal interval  
   for j = ivaro:1:ivarf 
       k1(j) = pdefunk(xvec(j),tvec(i),Told(j),dTdx(j),d2Tdx2(j)); 
   end 
  
% apply Euler method for the prediction step 
   for j = ivaro:1:ivarf 
       Ttem(j) = Told(j) + dt*k1(j); 
   end 
  
%  apply BCs at the prediction step 
   if (BC(1) == 'D')  
      Ttem(2) = -cBCo(t)/aBCo(t); 
   else 
      %Ttem(1) =  2.0*dx/bBCo(t)*( aBCo(t)*Ttem(2)    + 
bBCo(t)/(2.0*dx)*Ttem(3)    + cBCo(t));  
      Ttem(1) =       dx/bBCo(t)*( aBCo(t)*Ttem(2)    + bBCo(t)/(    
dx)*Ttem(2)    + cBCo(t));  
   end 
   if (BC(2) == 'D')  
      Ttem(nx-1) = -cBCf(t)/aBCf(t); 
   else 
      %Ttem(nx) = 2.0*dx/bBCf(t)*(-aBCf(t)*Ttem(nx-1) + 
bBCf(t)/(2.0*dx)*Ttem(nx-2) - cBCf(t));   
      Ttem(nx) = dx/bBCf(t)*(-aBCf(t)*Ttem(nx-1) + bBCf(t)/(dx)*Ttem(nx-1) - 
cBCf(t));   
   end 
    
% 
%  Correction Step 
% 
  
%  compute first and second spatial derivatives 
   for j = ivaro:1:ivarf 
       %dTdx(j) = 0.5*( Ttem(j+1) - Ttem(j-1) )*dxi; 
       dTdx(j) =     ( Ttem(j)   - Ttem(j-1) )*dxi; 
       d2Tdx2(j) = ( Ttem(j+1) - 2.0*Ttem(j) + Ttem(j-1) )*dxi^2; 
   end 
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% estimate slope  at end of temporal interval  
   for j = ivaro:1:ivarf 
       k2(j) = pdefunk(xvec(j),tvec(i),Ttem(j),dTdx(j),d2Tdx2(j)); 
   end 
  
% apply second-order method for the correction step 
   for j = ivaro:1:ivarf 
       Tnew(j) = Told(j) + 0.50*dt*(k1(j)+k2(j)); 
   end 
  
%  apply BCs at the correction step 
   if (BC(1) == 'D')  
      Tnew(2) = -cBCo(t)/aBCo(t); 
   else 
      %Tnew(1) =  2.0*dx/bBCo(t)*( aBCo(t)*Tnew(2)    + 
bBCo(t)/(2.0*dx)*Tnew(3)    + cBCo(t));  
      Tnew(1) =       dx/bBCo(t)*( aBCo(t)*Tnew(2)    + bBCo(t)/(    
dx)*Tnew(2)    + cBCo(t));  
   end 
   if (BC(2) == 'D')  
      Tnew(nx-1) = -cBCf(t)/aBCf(t); 
   else 
      %Tnew(nx) = 2.0*dx/bBCf(t)*(-aBCf(t)*Tnew(nx-1) + 
bBCf(t)/(2.0*dx)*Tnew(nx-2) - cBCf(t));   
      Tnew(nx) = dx/bBCf(t)*(-aBCf(t)*Tnew(nx-1) + bBCf(t)/(dx)*Tnew(nx-1) - 
cBCf(t));   
   end 
    
% store new temperatures 
   Tmat(1:nx,i) = Tnew(1:nx); 
   Told(1:nx) = Tnew(1:nx); 
end 
  
% plot 
figure(1); 
nskip = 100; 
for i = 1:nskip:nt 
   plot(xvec(2:nx-1),Tmat(2:nx-1,i),'k-'); 
   pause(1/5); 
   %hold on; 
end 
xlabel('position (m)') 
ylabel('Temperature (K)'); 
  
  
% 
%  functions defining PDE 
% 
  
function dydt = pdefunk(x,t,y,dydx,d2ydx2); 
% molar concentrations [mol/m^3] 
CA = y(1); 
% velocity [m/s] 
v = 0.1; 
% diffusivity [m^2/s] 
D = 1.0e-9; 
%  rate constant [m^6/mol^2/s] 
k = 1.0e-5; 
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% stoichiometric coefficients 
nuA = -2.0; 
% reaction rate [mol/m^3/s] 
rate = k*CA^2; 
dydt = -v*dydx + D*d2ydx2 + nuA*rate; 
  
% 
%  function defining initial condition 
% 
  
function ic = icfunk(x); 
ic = 0; 
  
% 
%  functions defining LHS boundary condition 
% 
  
function f = aBCo(t); 
f = 1; 
  
function f = bBCo(t); 
f = 0; 
  
function f = cBCo(t); 
f = -1000; 
  
% 
%  functions defining RHS boundary condition 
% 
  
function f = aBCf(t); 
f = 0; 
  
  
function f = bBCf(t); 
f = 1; 
  
function f = cBCf(t); 
f = 0; 
 


