
D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 1

Incorporation of Neumann and Mixed Boundary Conditions
into the Crank-Nicholson Method

David Keffer

Department of Materials Science & Engineering
University of Tennessee, Knoxville

date begun: February 26, 2014

I. Problem statement

Consider a linear parabolic partial differential equation in one spatial dimension:

            txf
T

txb
txc

Ttxa
T

txc
T

txd x ,
x

,
x

,
,

x
,

t
,

2

2











 












 (1)

where the functions,  txa , ,  txbx , ,  txc , ,  txd , and  txf , are known functions of space

and time.
 Because the equation is first order in time, this problem requires one initial condition of the
form

  )(, xTtxT io 

where the function,)(xTi , provides the initial profile of the unknown.

 In a previous lecture package, we showed how Dirichlet boundary conditions could be
incorporated into the solution of the PDE. In this package, we extend the approach to arbitrary
linear boundary conditions of the form,

           0
,

, 



 tc

x

txT
tbtxTta BCo

o
BCooBCo (2.o)

and

           0
,

, 



 tc

x

txT
tbtxTta BCf

f
BCffBCf (2.f)

These are general boundary conditions because they contain both Dirichlet and Neumann
boundary conditions. Sometimes, equation (2) is called mixed boundary conditions. The mixed
boundary conditions revert to Dirichlet boundary conditions when  tbBC is set to zero. The

mixed boundary conditions revert to Neumann boundary conditions when  taBC is set to zero.

We define two additional spatial nodes before the first boundary and after the last boundary to
allow us to account for mixed boundary conditions. See the figure below.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 2

spatial dimension

te
m

po
ra

l d
im

en
si

on

node where temperature is known due to initial condition

legend

imaginary node needed for Neumann boundary condition

Ti
j

to

t1 =to+t

t2 =to+2t

tn =to+nt

tj =to+jt

x o x 1
=

x o
+
x

x 2
=

x o
+

2
x

x i
=

x o
+

i
x

x m
=

x o
+

m
x

node where temperature is unknown but will be solved for

X
-1

=
x o

-
x

x m
+

1=
x o

+
(m

+
1)
x

Figure One. Schematic of the spatial and temporal discretization. Case II. Mixed Boundary
Conditions.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 3

II. Discretization

The discretization of the PDE is unaffected by the change in boundary conditions. We use the
same centered finite difference formula to approximate the first spatial derivatives in the
boundary condition. Thus equation (2.o) becomes in discretized form

             0
2

,,
, 




 tc
x

txxTtxxT
tbtxTta BCo

oo
BCooBCo (3.o)

which in the notation adopted earlier can be written as

       tcT

x

tb
TtaT

x

tb
BCo

j
i

BCoj
iBCo

j
i

BCo 





  11 22
 (4.o)

and analogously for the RHS boundary

       tcT

x

tb
TtaT

x

tb
BCf

j
i

BCfj
iBCf

j
i

BCf 





  11 22
 (4.o)

These are two linear algebraic equations. If the boundary conditions are Neumann or Mixed (in
other words BCob and/or BCfb is non-zero, then these equations are used to define the values of

the dependent variable at the imaginary node(s). In this case the PDE is used to define the
values of the dependent variable at the boundary node(s), located at ox and fx .

This is in contrast to the case where the boundary conditions were of the Dirichlet form, (in other
words BCob and/or BCfb are zero. In that case, there were no imaginary nodes. The equations

given above are used to define the value of the dependent variable at the boundary node(s)
located at ox and fx .

We have previously derived the Crank-Nicholson method, as

 



 






 






 

 jjjjjj
RRTKITKI *1**11* (5)

where

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 4































































































otherwise0

1-mi2 ,1i
2

1

2-mi1 ,1i
2

1

 1-mi1 ,i
2

2

2

2

,
*









forb
dx

dc

xx

c

d

t
K

forb
dx

dc

xx

c

d

t
K

fora
x

c

d

t
K

K

j
i

j
i

j
i

j
i

d

j
i

j
i

j
i

j
i

d

j
i

j
i

j
i

d

j
i

The matrix,
j

iK ,
*
 , is tridiagonal. The associated vector of constants is




































1m

1

2-mi2

1

1
*

iforTKf
d

t
R

iforTKf
d

t
R

forf
d

t
R

R

fd
j

ij
i

m

od
j

ij
i

j
ij

i
d

j
i

The only remaining issue is integrating these sets of linear equations, describing the BCs adn the
PDEs.

We have to be careful about our book-keeping. There are conceptually m intervals in the real
space of the system as shown in Figure 1. With the imaginary nodes, the indexing of these nodes
runs from -1 to m+1. In Matlab, the indices on matrices must begin at 1. Therefore, the matrix
index runs from 1 to 3 mmx , which is the total number of nodes.

The accounting is slightly complicated by the fact that there are four choice of types of boundary
conditions, depending on whether the first and second BCs are Dirichlet or Mixed (here we use
Mixed BCs to include Neumann BCs as well, since their treatment is equivalent). In Table 1
below, we provide a summary for which algebraic equations are used to solve for each node, as a
function of the combination of types of BCs.

If both BCs are of the Dirichlet form, then we don’t need the imaginary nodes. However, these
nodes exist in a generalized code that can also solve Mixed BCs. Therefore, the algebraic
equation that we use to define the imaginary nodes in this case is to simply set them to zero and
ignore them thereafter. The algebraic equations representing the boundary conditions are used at
nodes 2 and 1xm . The algebraic equations representing the PDEs are used at all of the interior

nodes.

If both BCs are of the Mixed (or Neumann) type, then we use the algebraic equations
representing the boundary conditions at the imaginary nodes (different than what was done for
the Dirichlet BCs). All other nodes use the algebraic equations representing the PDE.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 5

The cases representing a combination of boundary conditions, either D on the LHS and M on the
RHS or vice versa are described in Table 1 below.

x subscript
in Figure 1.

matrix index   DxBC o 

  DxBC f 

  DxBC o 

  MxBC f 

  MxBC o 

  DxBC f 

  MxBC o 

  MxBC f 

-1 1 01 T 01 T use  oxBC use  oxBC

0 2 use  oxBC use  oxBC use PDE use PDE

11  mi 23  xmi 3 use PDE use PDE use PDE use PDE

m 1xm use  fxBC use PDE use  fxBC use PDE

m+1 xm 0
xmT use  fxBC 0

xmT use  fxBC

Table 1. This table shows which algebraic equation to use depending upon the combination of
boundary conditions.

A code that implements the Crank-Nicholson method for any combination of Dirichlet and
Mixed boundary conditions is given at the end of this document.

An example application of the code is provided below.

Consider the following problem

)0(
x

)0()0
x

()0(
x

)1(
t

)1(
2

2











 











 f
T

b
c

Ta
T

c
T

d

  300)(,  xTtxT io   400)(,  tTtxT oo 0
  fxxx

dT

In this case, the rod is initially at 300 K. One end of the rod is then maintained at 400 K. The
other end of the rod is insulated so that the heat flux (and thus the temperature gradient) is zero.

We used 10 spatial intervals and solved from to = 0 to tf = 1, with 100 temporal intervals. In the
plot, we show the profile at every time.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
300

310

320

330

340

350

360

370

380

390

400

position (m)

T
em

pe
ra

tu
re

 (
K

)

Figure 2. Transient behavior of a metal rod initially at 300 K with one boundary attached to a
thermal reservoir that maintains the temperature at 400 K and the other boundary insulated.
Since there is no heat-loss to the surroundings in this problem, the steady-state temperature
corresponds to a uniform temperature of 400 K in the rod. In this plot, the lowest profile is the
earliest time. As time progresses, the profile approaches the steady state profile. The temporal
spacing between lines is constant and so the gap between lines serves as a measure of the rate of
change in the temperature. The rate is fastest early on and slows down as the temperature
gradients decrease and the rod approaches the steady state profile. In this plot, we have clearly
not reached steady state. Theoretically, it takes an infinite time to reach steady state. Practically
speaking our ability to measure deviations from steady state is limited by the accuracy of our
thermocouples and the noise present due to external disturbances not accounted for in this
idealized model.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 7

Appendix. Matlab Subroutines

Code A. linparapde_crank_anyBC.m

function linparapde_crank_anyBC
%
% The routine linparapde_euler will solve
% a single linear 1-D parabolic PDE of the form
%
% d(x,t)*dT/dt = div(c(x,t)*grad(T)) - a(x,t)*T -b(x,t)*dTdx +f(x,t)
%
% using the Euler Method.
%
% The initial condition must have the form
% IC: T(x,to) = To(x);
%
% The boundary conditions must both be
% Dirichlet Boundary Conditions of the form
% single linear 1-D parabolic PDE with
% 2 Mixed Boundary Conditions
% BC 1: aBCo(t)*T(xo,t) + bBCo(t)*dTdx(xo,t) + cBCo(t) = 0;
% BC 2: aBCf(t)*T(xf,t) + bBCf(t)*dTdx(xf,t) + cBCf(t) = 0;
%
% The necessary functions
% a(x,t), b(x,t), c(x,t), dcdx(x,t), f(x,t), To(x),
% aBCo(t), bBCo(t), cBCo(t), aBCf(t), bBCf(t), cBCf(t)
% are entered at the bottom of the file
%
% The initial value, final value and discretization in time, t,
% to, tf, and dt must be entered at the top of the file.
%
% The initial value, final value and discretization in space, x,
% xo, xf, and dx must be entered at the top of the file.
%
% The type of boundary conditions 'D', 'N' or 'M'
% for each boundary must be entered at the top of the file.
%
% code written by: David J. Keffer
% University of Tennessee, dkeffer@utk.edu
% code written: October 21, 2001
% comments last updated: February 26, 2014
%
clear all;
close all;
%
% define type of boundary condition
% Choices are 'D' = Dirichlet, i.e. bBC(t) = 0
% Choices are 'N' = Neumann, i.e. aBC(t) = 0
% Choices are 'M' = Mixed, bBC(t) ~= 0 & aBC(t) ~= 0
%
BC(1) = 'D';
BC(2) = 'N';

% discretize time
to = 0;
tf = 1.0e-0;
dt = 1.0e-2;

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 8

tvec = [to:dt:tf];
nt = length(tvec);

% discretize space
xo = 0;
xf = 1.0;
dx = 1.0e-1;
% include imaginary boundary nodes
xvec = [xo-dx:dx:xf+dx];
nx = length(xvec);

% dimension solution
Tmat = zeros(nx,nt);

% dimension temporary vectors
Told = zeros(nx,1);
Tnew = zeros(nx,1);
Amat = zeros(nx,nx);
bvec = zeros(nx,1);

% apply initial conditions to all real nodes
i = 1;
t = tvec(i);
for j = 2:1:nx-1
 x = xvec(j);
 Amat(j,j) = 1.0;
 bvec(j) = icfunk(x);
end

% implement LHS BCs
 if (BC(1) == 'D')
 Amat(1,1) = 1.0;
 bvec(1) = 0.0d0;
% Amat(2,2) = aBCo(t);
% bvec(2) = -cBCo(t);
 else
 Amat(1,1) = -1.0/(2.0*dt)*bBCo(t);
 Amat(1,2) = aBCo(t);
 Amat(1,3) = 1.0/(2.0*dt)*bBCo(t);
 bvec(1) = -cBCo(t);
 end

% implement RHS BCs
 if (BC(2) == 'D')
 Amat(nx,nx) = 1.0;
 bvec(nx) = 0.0d0;
% Amat(nx-1,nx-1) = aBCf(t);
% bvec(nx-1) = -cBCf(t);
 else
 Amat(nx,nx-2) = -1.0/(2.0*dt)*bBCf(t);
 Amat(nx,nx-1) = aBCf(t);
 Amat(nx,nx) = 1.0/(2.0*dt)*bBCf(t);
 bvec(nx) = -cBCf(t);
 end

% store initial conditions in solution matrix
Tmat(1:nx,1) = inv(Amat)*bvec;

%

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 9

% Determine, based on type of BC, how to define matrix
% ivaro = index of first node to be solved by PDE
% ivarf = index of last node to be solved by PDE
% nvar = number of nodes to be solved by PDE
%
if (BC(1) == 'D')
 ivaro = 3;
else
 ivaro = 2;
end
if (BC(2) == 'D')
 ivarf = nx-2;
else
 ivarf = nx-1;
end
nvar = ivarf - ivaro + 1;

% loop over times
Told(1:nx) = Tmat(1:nx,i);
for i = 2:1:nt
% reinitialize Amat and bvec
 Amat = zeros(nx,nx);
 bvec = zeros(nx,1);
% update time
 told = tvec(i-1);
 t = tvec(i);

% implement LHS BCs
 if (BC(1) == 'D')
 Amat(1,1) = 1.0;
 bvec(1) = 0.0d0;
 Amat(2,2) = aBCo(t);
 bvec(2) = -cBCo(t);
 else
 Amat(1,1) = -1.0/(2.0*dt)*bBCo(t);
 Amat(1,2) = aBCo(t);
 Amat(1,3) = 1.0/(2.0*dt)*bBCo(t);
 bvec(1) = -cBCo(t);
 end

% implement RHS BCs
 if (BC(2) == 'D')
 Amat(nx,nx) = 1.0;
 bvec(nx) = 0.0d0;
 Amat(nx-1,nx-1) = aBCf(t);
 bvec(nx-1) = -cBCf(t);
 else
 Amat(nx,nx-2) = -1.0/(2.0*dt)*bBCf(t);
 Amat(nx,nx-1) = aBCf(t);
 Amat(nx,nx) = 1.0/(2.0*dt)*bBCf(t);
 bvec(nx) = -cBCf(t);
 end

% implement Crank-Nicholson for PDEs from ivaro to ivarf
 Kmatold = 0.5*getK(nx,ivaro,ivarf,told,xvec,dt,dx);
 Rvecold = 0.5*getR(nx,ivaro,ivarf,told,xvec,dt,dx);
 Kmatnew = 0.5*getK(nx,ivaro,ivarf,t, xvec,dt,dx);
 Rvecnew = 0.5*getR(nx,ivaro,ivarf,t, xvec,dt,dx);

% add missing contributions to diagonal elements

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 10

 Kmatnew = -Kmatnew;
 for j = ivaro:1:ivarf
 Kmatnew(j,j) = 1.0 + Kmatnew(j,j);
 Kmatold(j,j) = 1.0 + Kmatold(j,j);
 end

% build and invert Amat
 Amat(1:nx,1:nx) = Amat(1:nx,1:nx) + Kmatnew(1:nx,1:nx);
 Ainv = inv(Amat);

% build the bvec
 KmatTold = Kmatold*Told;
 for j = ivaro:1:ivarf
 bvec(j) = bvec(j) + KmatTold(j) + Rvecnew(j) + Rvecold(j);
 end

% solve for the new temperatures
 Tnew = Ainv*bvec;
 Tmat(1:nx,i) = Tnew;
 Told = Tnew;
end

% plot
figure(1);
nskip = 1;
for i = 1:nskip:nt
 plot(xvec(2:nx-1),Tmat(2:nx-1,i),'k-');
 %pause(1);
 hold on;
end
xlabel('position (m)')
ylabel('Temperature (K)');

function Kmat = getK(nx,ivaro,ivarf,t,xvec,dt,dx);
 Kmat = zeros(nx,nx);
 % diagonal elements of matrix
 for j = ivaro:1:ivarf
 x = xvec(j+1);
 Kmat(j,j) = dt/dfunk(x,t)* (-2*cfunk(x,t)/dx^2 - afunk(x,t));
 end
 % upper off-diagonal elements of matrix
 for j = ivaro:1:ivarf
 x = xvec(j+1);
 Kmat(j,j+1) = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 + (dcdxfunk(x,t) -
bfunk(x,t))/(2*dx));
 end
 % lower off-diagonal elements of matrix
 for j = ivaro:1:ivarf
 x = xvec(j+1);
 Kmat(j,j-1) = dt/dfunk(x,t)* (cfunk(x,t)/dx^2 - (dcdxfunk(x,t) -
bfunk(x,t))/(2*dx));
 end

 function Rvec = getR(nx,ivaro,ivarf,t,xvec,dt,dx);
 Rvec = zeros(nx,1);
 for j = ivaro:1:ivarf
 x = xvec(j+1);
 Rvec(j) = dt/dfunk(x,t)*ffunk(x,t);
 end

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 11

function a = afunk(x,t);
a = 0;

function b = bfunk(x,t);
b = 0;

function c = cfunk(x,t);
c = 1;

function dcdx = dcdxfunk(x,t);
dcdx = 0;

function d = dfunk(x,t);
d = 1;

function f = ffunk(x,t);
f = 000;

%
% function defining initial condition
%

function ic = icfunk(x);
ic = 300;

%
% functions defining LHS boundary condition
%

function f = aBCo(t);
f = 1;

function f = bBCo(t);
f = 0;

function f = cBCo(t);
f = -400;

%
% functions defining RHS boundary condition
%

function f = aBCf(t);
f = 0;

function f = bBCf(t);
f = 1;

function f = cBCf(t);
f = 0;

An example of using linparapde_crank_anyBC is given below.

>> linparapde_crank_anyBC

