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I.  Problem statement 
 
Consider a linear parabolic partial differential equation in one spatial dimension: 
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where the functions,  txa , ,  txbx , ,  txc , ,  txd ,  and  txf ,  are known functions of space 

and time. 
 Because the equation is first order in time, this problem requires one initial condition of the 
form 
 
   )(, xTtxT io    

 
where the function, )(xTi , provides the initial profile of the unknown. 

 In a previous lecture package, we showed how Dirichlet boundary conditions could be 
incorporated into the solution of the PDE.  In this package, we extend the approach to arbitrary 
linear boundary conditions of the form, 
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These are general boundary conditions because they contain both Dirichlet and Neumann 
boundary conditions.  Sometimes, equation (2) is called mixed boundary conditions.  The mixed 
boundary conditions revert to Dirichlet boundary conditions when  tbBC  is set to zero.  The 

mixed boundary conditions revert to Neumann boundary conditions when  taBC  is set to zero. 

 
We define two additional spatial nodes before the first boundary and after the last boundary to 
allow us to account for mixed boundary conditions.  See the figure below.  
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Figure One.  Schematic of the spatial and temporal discretization.  Case II.  Mixed Boundary 
Conditions. 
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II.  Discretization 
 
The discretization of the PDE is unaffected by the change in boundary conditions.  We use the 
same centered finite difference formula to approximate the first spatial derivatives in the 
boundary condition.  Thus equation (2.o) becomes in discretized form 
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which in the notation adopted earlier can be written as 
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and analogously for the RHS boundary 
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These are two linear algebraic equations.  If the boundary conditions are Neumann or Mixed (in 
other words BCob  and/or BCfb  is non-zero, then these equations are used to define the values of 

the dependent variable at the imaginary node(s).  In this case the PDE is used to define the 
values of the dependent variable at the boundary node(s), located at ox  and fx . 

 
This is in contrast to the case where the boundary conditions were of the Dirichlet form, (in other 
words BCob  and/or BCfb  are zero.  In that case, there were no imaginary nodes.  The equations 

given above are used to define the value of the dependent variable at the boundary node(s) 
located at ox  and fx . 

 
We have previously derived the Crank-Nicholson method, as  
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where  
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The matrix, 
j

iK ,
*
 , is tridiagonal.  The associated vector of constants is 
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The only remaining issue is integrating these sets of linear equations, describing the BCs adn the 
PDEs. 
 
We have to be careful about our book-keeping.  There are conceptually m intervals in the real 
space of the system as shown in Figure 1.  With the imaginary nodes, the indexing of these nodes 
runs from -1 to m+1.  In Matlab, the indices on matrices must begin at 1.  Therefore, the matrix 
index runs from 1 to 3 mmx , which is the total number of nodes.   

 
The accounting is slightly complicated by the fact that there are four choice of types of boundary 
conditions, depending on whether the first and second BCs are Dirichlet or Mixed (here we use 
Mixed BCs to include Neumann BCs as well, since their treatment is equivalent).  In Table 1 
below, we provide a summary for which algebraic equations are used to solve for each node, as a 
function of the combination of types of BCs.   
 
If both BCs are of the Dirichlet form, then we don’t need the imaginary nodes.  However, these 
nodes exist in a generalized code that can also solve Mixed BCs.  Therefore, the algebraic 
equation that we use to define the imaginary nodes in this case is to simply set them to zero and 
ignore them thereafter.  The algebraic equations representing the boundary conditions are used at 
nodes 2 and 1xm .  The algebraic equations representing the PDEs are used at all of the interior 

nodes. 
 
If both BCs are of the Mixed (or Neumann) type, then we use the algebraic equations 
representing the boundary conditions at the imaginary nodes (different than what was done for 
the Dirichlet BCs).  All other nodes use the algebraic equations representing the PDE. 
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The cases representing a combination of boundary conditions, either D on the LHS and M on the 
RHS or vice versa are described in Table 1 below. 
 
x subscript 
in Figure 1. 

matrix index   DxBC o   

  DxBC f   

  DxBC o   

  MxBC f   

  MxBC o   

  DxBC f   

  MxBC o   

  MxBC f   

-1 1 01 T  01 T  use  oxBC  use  oxBC  

0 2 use  oxBC  use  oxBC  use PDE use PDE 

11  mi  23  xmi 3  use PDE use PDE use PDE use PDE 

m 1xm  use  fxBC  use PDE use  fxBC  use PDE 

m+1 xm  0
xmT  use  fxBC  0

xmT  use  fxBC  

Table 1.  This table shows which algebraic equation to use depending upon the combination of 
boundary conditions.   
 
A code that implements the Crank-Nicholson method for any combination of Dirichlet and 
Mixed boundary conditions is given at the end of this document. 
 
An example application of the code is provided below. 
 
Consider the following problem 
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In this case, the rod is initially at 300 K.  One end of the rod is then maintained at 400 K.  The 
other end of the rod is insulated so that the heat flux (and thus the temperature gradient) is zero.   
 
We used 10 spatial intervals and solved from to = 0 to tf = 1, with 100 temporal intervals.  In the 
plot, we show the profile at every time. 
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Figure 2.  Transient behavior of a metal rod initially at 300 K with one boundary attached to a 
thermal reservoir that maintains the temperature at 400 K and the other boundary insulated.  
Since there is no heat-loss to the surroundings in this problem, the steady-state temperature 
corresponds to a uniform temperature of 400 K in the rod. In this plot, the lowest profile is the 
earliest time.  As time progresses, the profile approaches the steady state profile.  The temporal 
spacing between lines is constant and so the gap between lines serves as a measure of the rate of 
change in the temperature.  The rate is fastest early on and slows down as the temperature 
gradients decrease and the rod approaches the steady state profile.  In this plot, we have clearly 
not reached steady state.  Theoretically, it takes an infinite time to reach steady state.  Practically 
speaking our ability to measure deviations from steady state is limited by the accuracy of our 
thermocouples and the noise present due to external disturbances not accounted for in this 
idealized model. 
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Appendix.  Matlab Subroutines 

Code A.  linparapde_crank_anyBC.m 
 
function linparapde_crank_anyBC 
% 
%  The routine linparapde_euler will solve  
%  a single linear 1-D parabolic PDE of the form 
% 
%  d(x,t)*dT/dt = div(c(x,t)*grad(T)) - a(x,t)*T -b(x,t)*dTdx +f(x,t) 
% 
%  using the Euler Method. 
% 
%  The initial condition must have the form 
%  IC:  T(x,to) = To(x); 
% 
%  The boundary conditions must both be 
%  Dirichlet Boundary Conditions of the form 
%  single linear 1-D parabolic PDE with  
%  2 Mixed Boundary Conditions 
%  BC 1:  aBCo(t)*T(xo,t) + bBCo(t)*dTdx(xo,t) + cBCo(t) = 0; 
%  BC 2:  aBCf(t)*T(xf,t) + bBCf(t)*dTdx(xf,t) + cBCf(t) = 0; 
% 
%  The necessary functions 
%  a(x,t), b(x,t), c(x,t), dcdx(x,t), f(x,t), To(x), 
%  aBCo(t), bBCo(t), cBCo(t), aBCf(t), bBCf(t), cBCf(t)  
%  are entered at the bottom of the file 
% 
%  The initial value, final value and discretization in time, t,  
%  to, tf, and dt must be entered at the top of the file. 
% 
%  The initial value, final value and discretization in space, x, 
%  xo, xf, and dx must be entered at the top of the file. 
% 
%  The type of boundary conditions 'D', 'N' or 'M' 
%  for each boundary must be entered at the top of the file. 
% 
%  code written by:  David J. Keffer 
%  University of Tennessee, dkeffer@utk.edu 
%  code written:  October 21, 2001 
%  comments last updated:  February 26, 2014 
% 
clear all; 
close all; 
% 
%  define type of boundary condition 
%  Choices are 'D' = Dirichlet, i.e. bBC(t) = 0 
%  Choices are 'N' = Neumann, i.e. aBC(t) = 0 
%  Choices are 'M' = Mixed, bBC(t) ~= 0 & aBC(t) ~= 0 
% 
BC(1) = 'D'; 
BC(2) = 'N'; 
  
% discretize time 
to = 0; 
tf = 1.0e-0; 
dt = 1.0e-2; 
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tvec = [to:dt:tf]; 
nt = length(tvec); 
  
% discretize space 
xo = 0; 
xf = 1.0; 
dx = 1.0e-1; 
% include imaginary boundary nodes  
xvec = [xo-dx:dx:xf+dx]; 
nx = length(xvec); 
  
% dimension solution 
Tmat = zeros(nx,nt); 
  
  
% dimension temporary vectors 
Told = zeros(nx,1); 
Tnew = zeros(nx,1); 
Amat = zeros(nx,nx); 
bvec = zeros(nx,1); 
  
% apply initial conditions to all real nodes 
i = 1; 
t = tvec(i); 
for j = 2:1:nx-1 
    x = xvec(j); 
    Amat(j,j) = 1.0; 
    bvec(j) = icfunk(x); 
end 
  
%  implement LHS BCs 
   if (BC(1) == 'D') 
      Amat(1,1) = 1.0; 
      bvec(1) = 0.0d0; 
%      Amat(2,2) = aBCo(t); 
%      bvec(2) = -cBCo(t); 
   else 
      Amat(1,1) = -1.0/(2.0*dt)*bBCo(t); 
      Amat(1,2) =               aBCo(t); 
      Amat(1,3) =  1.0/(2.0*dt)*bBCo(t); 
      bvec(1) = -cBCo(t); 
   end 
  
%  implement RHS BCs 
   if (BC(2) == 'D') 
      Amat(nx,nx) = 1.0; 
      bvec(nx) = 0.0d0; 
%      Amat(nx-1,nx-1) = aBCf(t); 
%      bvec(nx-1) = -cBCf(t); 
   else 
      Amat(nx,nx-2) = -1.0/(2.0*dt)*bBCf(t); 
      Amat(nx,nx-1) =               aBCf(t); 
      Amat(nx,nx)   =  1.0/(2.0*dt)*bBCf(t); 
      bvec(nx) = -cBCf(t); 
   end 
  
% store initial conditions in solution matrix 
Tmat(1:nx,1) = inv(Amat)*bvec; 
  
% 
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%  Determine, based on type of BC, how to define matrix 
%  ivaro = index of first node to be solved by PDE  
%  ivarf = index of last node to be solved by PDE  
%  nvar = number of nodes to be solved by PDE 
% 
if (BC(1) == 'D')  
   ivaro = 3; 
else 
   ivaro = 2; 
end 
if (BC(2) == 'D')  
   ivarf = nx-2; 
else 
   ivarf = nx-1; 
end 
nvar = ivarf - ivaro + 1; 
  
% loop over times 
Told(1:nx) = Tmat(1:nx,i); 
for i = 2:1:nt 
%  reinitialize Amat and bvec 
   Amat = zeros(nx,nx); 
   bvec = zeros(nx,1); 
%  update time 
   told = tvec(i-1); 
   t = tvec(i); 
    
%  implement LHS BCs 
   if (BC(1) == 'D') 
      Amat(1,1) = 1.0; 
      bvec(1) = 0.0d0; 
      Amat(2,2) = aBCo(t); 
      bvec(2) = -cBCo(t); 
   else 
      Amat(1,1) = -1.0/(2.0*dt)*bBCo(t); 
      Amat(1,2) =               aBCo(t); 
      Amat(1,3) =  1.0/(2.0*dt)*bBCo(t); 
      bvec(1) = -cBCo(t); 
   end 
  
%  implement RHS BCs 
   if (BC(2) == 'D') 
      Amat(nx,nx) = 1.0; 
      bvec(nx) = 0.0d0; 
      Amat(nx-1,nx-1) = aBCf(t); 
      bvec(nx-1) = -cBCf(t); 
   else 
      Amat(nx,nx-2) = -1.0/(2.0*dt)*bBCf(t); 
      Amat(nx,nx-1) =               aBCf(t); 
      Amat(nx,nx)   =  1.0/(2.0*dt)*bBCf(t); 
      bvec(nx) = -cBCf(t); 
   end 
    
%  implement Crank-Nicholson for PDEs from ivaro to ivarf 
   Kmatold = 0.5*getK(nx,ivaro,ivarf,told,xvec,dt,dx); 
   Rvecold = 0.5*getR(nx,ivaro,ivarf,told,xvec,dt,dx); 
   Kmatnew = 0.5*getK(nx,ivaro,ivarf,t,   xvec,dt,dx); 
   Rvecnew = 0.5*getR(nx,ivaro,ivarf,t,   xvec,dt,dx); 
  
%  add missing contributions to diagonal elements 
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   Kmatnew = -Kmatnew; 
   for j = ivaro:1:ivarf 
       Kmatnew(j,j) = 1.0 + Kmatnew(j,j); 
       Kmatold(j,j) = 1.0 + Kmatold(j,j); 
   end 
  
%  build and invert Amat 
       Amat(1:nx,1:nx) = Amat(1:nx,1:nx) + Kmatnew(1:nx,1:nx); 
       Ainv = inv(Amat); 
        
% build the bvec 
       KmatTold = Kmatold*Told; 
       for j = ivaro:1:ivarf 
           bvec(j) = bvec(j) + KmatTold(j) + Rvecnew(j) + Rvecold(j); 
       end 
        
% solve for the new temperatures 
   Tnew = Ainv*bvec; 
   Tmat(1:nx,i) = Tnew; 
   Told = Tnew; 
end 
  
% plot 
figure(1); 
nskip = 1; 
for i = 1:nskip:nt 
   plot(xvec(2:nx-1),Tmat(2:nx-1,i),'k-'); 
   %pause(1); 
   hold on; 
end 
xlabel('position (m)') 
ylabel('Temperature (K)'); 
  
function Kmat = getK(nx,ivaro,ivarf,t,xvec,dt,dx); 
   Kmat = zeros(nx,nx); 
   % diagonal elements of matrix 
   for j = ivaro:1:ivarf 
      x = xvec(j+1); 
      Kmat(j,j) =  dt/dfunk(x,t)* (-2*cfunk(x,t)/dx^2 - afunk(x,t) ); 
   end 
   % upper off-diagonal elements of matrix 
   for j = ivaro:1:ivarf 
      x = xvec(j+1); 
      Kmat(j,j+1) =  dt/dfunk(x,t)* (cfunk(x,t)/dx^2 + (dcdxfunk(x,t) - 
bfunk(x,t))/(2*dx) ); 
   end 
   % lower off-diagonal elements of matrix 
   for j = ivaro:1:ivarf 
      x = xvec(j+1); 
      Kmat(j,j-1) =  dt/dfunk(x,t)* (cfunk(x,t)/dx^2 - (dcdxfunk(x,t) - 
bfunk(x,t))/(2*dx) ); 
   end 
    
   function Rvec = getR(nx,ivaro,ivarf,t,xvec,dt,dx); 
   Rvec = zeros(nx,1); 
   for j = ivaro:1:ivarf 
      x = xvec(j+1); 
      Rvec(j) =  dt/dfunk(x,t)*ffunk(x,t); 
   end 
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function a = afunk(x,t); 
a = 0; 
  
function b = bfunk(x,t); 
b = 0; 
  
function c = cfunk(x,t); 
c = 1; 
  
function dcdx = dcdxfunk(x,t); 
dcdx = 0; 
  
function d = dfunk(x,t); 
d = 1; 
  
function f = ffunk(x,t); 
f = 000; 
  
% 
%  function defining initial condition 
% 
  
function ic = icfunk(x); 
ic = 300; 
  
% 
%  functions defining LHS boundary condition 
% 
  
function f = aBCo(t); 
f = 1; 
  
function f = bBCo(t); 
f = 0; 
  
function f = cBCo(t); 
f = -400; 
  
% 
%  functions defining RHS boundary condition 
% 
  
function f = aBCf(t); 
f = 0; 
  
function f = bBCf(t); 
f = 1; 
  
function f = cBCf(t); 
f = 0; 
  
 
An example of using linparapde_crank_anyBC is given below. 
 
>> linparapde_crank_anyBC 


