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I.  One Linear ODE with constant coefficient 

We begin the study of the stability analysis of ordinary differential equations with the simplest 
example possible, namely a single linear ODE with constant coefficient.  The ODE has the form 
 

 bay
dx

dy
  (I.1) 

 
subject to the initial condition   oo yxxy  .  This ODE has an analytical solution, obtained 

through the method of the integrating factor, given by  
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In this form, it can be observed that the solution of the ODE has an exponential form.  The 
stability of this system can be evaluated by examining the behavior of  xy   in the limit as x 
approaches infinity 
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The stability depends on the sign of a, the constant coefficient.  When a is negative, the solution 
converges to a finite value.  When a is positive, the solution diverges to infinity.  In the language 
of stability analysis, we shall say that a converging solution exhibits stable behavior and a 
diverging solution exhibits unstable behavior.   
 
It will be useful to identify a as the eigenvalue of this problem.  In the subsequent problems, we 
shall see that the sign of the eigenvalues is critical in determining the stability of a system of 
ODEs. 
 
What’s the point of stability analysis?  The point of stability analysis is to determine  what sort 
of qualitative behavior you can expect from the solution to a system of ODEs, without actually 
having to solve them.  In this trivial case, we can determine the stability of this ODE simply 
from the sign of a.  While the systems that follow become more complicated, the over-riding 
purpose of stability analysis, namely predicting the qualitative behavior of the ODEs, remains 
the same.  The value of stability analysis becomes more important as the systems become more 
complicated and our intuitive understanding of the expected behavior begins to fail us.  
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II.   Two linear ODEs with constant coefficients  

The classic example of stability analysis involves two linear ODEs with constant coefficients.  
This is a very limited subset of problems but it is worth seeing what rigorous criteria for stability 
we can achieve.  We will proceed by examining a system of 2 linear ODEs.  The work will apply 
for a system of n linear ODEs (as will be shown in the next section) but it is much easier to 
visualize in two dimensions. 
 
We have a system of ODEs of the form 
 

 byA
dx

yd
           (II.1) 

 
and we have an initial condition of the form: 
 
 

oo yxxy  )(          (II.2) 

 
This system of equations has a critical point at  cc

xyy  , where 
c

y  satisfies the condition: 
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which yields 
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where the determinant of the 2x2 matrix is   1221221122

det aaaaA
x

 .   

 
Clearly the critical points are the values of y  when the derivatives of y  are zero.   However, 

when the derivatives are zero, the function is constant, so these critical points are often thought 
of as the steady-state, or equilibrium, or long-time (depending on the problem) solutions to the 
ODE.  This physical analogy only applies, however, when the critical points are stable.   
 
All trajectories pass through the critical point, including the eigenvectors. 
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Types of Critical Points 
 
There are five types of critical points.  The type of critical point depends on two and only two 
features of the ODEs:  (1) the nature of the eigenvalues (real, imaginary or complex) and (2) the 
sign of the real component of the eigenvalues.  The result is summarized in the following table. 
 
type of critical point nature of eigenvalues stability  
improper node real stable if all eigenvalues < 0 
proper node real stable if all eigenvalues < 0 
saddle point real unstable 
center imaginary  stable 
spiral point complex stable if real component of all eigenvalues < 0 
 
For a 2x2 matrix, the characteristic equation is  
 
    012212211  aaaa          (II.5) 
 
with eigenvalues given by the quadratic equation 
 

 
     

2

det4
22

2
22112211 x

Aaaaa 
      (II.6) 

 
From here, we see that the eigenvalues are strictly a function of A  and can be real, purely 

imaginary conjugates or complex conjugates.  Thus the nature and sign of these eigenvalues 
determine the type and stability of critical points. 
 
Example II.1.  Stable Improper Node 
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The critical point, eigenvalues and eigenvectors are  
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The eigenvalues are real and both negative.  Therefore, the node is a stable node.  It turns out to 
be an improper node (the most common type of node).  We will distinguish from a proper node 
shortly. 
 
We present a phase plot below.  A phase plot is a plot of y1 vs y2. Critical points can be plotted 
on a phase plot.  Trajectories (that is the solution of the ODEs from various initial conditions) 
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can be parametrically plotted on a phase plot.  In the following phase plot and all phase plots that 
follow, the trajectories are shown in blue.  The initial conditions are shown in green.  The final 
point of the trajectory is shown in red.  As a reminder, each trajectory involves the solution 
(analytical or numerical) of the ODE with a different initial condition. 
 
Because all of the trajectories in the phase plot for Example II.1. approach the critical point, we 
have visual evidence of its stability.  The eigenvectors correspond to the only straight-line 
trajectories in the phase plot. 
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         Phase Plot:  Example II.1. Stable Improper Node.     Phase Plot:  Example II.2. Unstable Improper Node. 
 
Example II.2.  Unstable Improper Node 
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The critical point, eigenvalues and eigenvectors are  
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The eigenvalues are real and both positive.  Therefore, the node is an unstable node.  It turns out 
to be an improper node.  From the phase plot, it is clear that all trajectories diverge from the 
critical point. 
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Example II.3.  Stable Proper Node 
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The critical point, eigenvalues and eigenvectors are  
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The eigenvalues are real and both negative.  Therefore, the node is a stable node.  It is called 
proper because all trajectories are straight in the phase plot (because the ODEs are not coupled). 
 
Example II.4.  Unstable Proper Node 
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The critical point, eigenvalues and eigenvectors are  
 

 











3

2
c

y    









10

01
  










10

01
c

W  

 
The eigenvalues are real and both positive.  Therefore, the node is an unstable proper node.  
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         Phase Plot:  Example II.3. Stable Proper Node.              Phase Plot:  Example II.4. Unstable Proper Node. 
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Example II.5.  (Unstable) Saddle Point 
 

 



















3

2

31

13
ybyA

dx

yd
        

 
The critical point, eigenvalues and eigenvectors are  
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The eigenvalues are both real.  One is positive the other is negative.  Therefore, the node is a 
saddle point.  Saddle points are by definition always unstable.  The instability of saddle points 
stems from the fact that in order for a node to be a stable all eigenvalues must be negative.  Since 
the signs of the eigenvalues of a saddle point are different, one of them must be positive and the 
critical point must be unstable.  
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Phase Plot:  Example II.5. (Unstable) Saddle Point. 

 
From the phase plot of the saddle point we observe that some trajectories initially approach the 
critical point, as they follow along the eigenvector associated with the negative eigenvalue.  
Eventually these trajectories diverge as they follow along the eigenvector associated with the 
positive eigenvalue. 
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Example II.6.  (Stable) Center 
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The critical point, eigenvalues and eigenvectors are  
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The eigenvalues are both purely imaginary.  The real components of both eigenvalues are zero.  
Therefore, the critical point is center.  Centers are by definition always stable.  
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Phase Plot:  Example II.6. (Stable) Center. 

 
From the phase plot of the center we observe that trajectories orbit the critical point.  They 
neither converge nor diverge.  The shape of the orbit need not be a circle nor an ellipse.  For 
nonlinear systems, the shape of the orbit can be very unusual, but it is a stable orbit, if it is a 
center. 
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Example II.7.  Stable Spiral Point 
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The critical point, eigenvalues and eigenvectors are  
 

 









5.0

5.2
c

y    












i

i

10

01
  




















ii
W

c

2
2

2
2

2
2

2
2

 

 
The eigenvalues are complex conjugate with negative real components.  Therefore, the node is a 
stable spiral point.   
 
Example II.8.  Unstable Spiral Point 
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The critical point, eigenvalues and eigenvectors are  
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The eigenvalues are complex conjugate with positive real components.  Therefore, the node is an 
unstable spiral point.   
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         Phase Plot:  Example II.7. Stable Spiral Point.              Phase Plot:  Example II.8. Unstable Spiral Point. 
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III.  N linear ODEs with constant coefficients  

 
In this section, we extend the classical stability analysis for two linear ODEs with constant 
coefficients to a larger system of the same type of ODEs.  We still have a system of ODEs of the 
form 
 

 byA
dx

yd
           (II.1) 

 
and we have an initial condition of the form: 
 
 

oo yxxy  )(          (II.2) 

 
For a system of 2 ODEs, the definition of a critical point was  

 

 
0

0

1

2

1

2 

dx
dy

dx
dy

dy

dy
          (II.3) 

 
By analogy, the definition of a critical point for a system of n linear ODEs is  

 

 0
dx

dyi  for all ni 1          (III.1) 

 
The critical point is then given by  
 

 bAy
c

1           (III.2) 

 
If the inverse exists, then the determinant is zero and we have a unique solution to this algebraic 
equation.  So that we see that a system of linear equations, regardless of the size, has only one 
critical point.  (Here we neglect cases where the system is poorly posed and there are infinite or 
no solutions to eqn (III.2).) 
 
The determination of the type of critical point is based on the same criteria as that provided in 
the previous section.  We have a node or a saddle point if all eigenvalues are real.  We have a 
center if all eigenvalues are imaginary.  We have a spiral point if all eigenvalues are complex.  If 
we have some combination of real and complex eigenvalues, then we will have some 
combination of behaviors, as shall be demonstrated in the example below. 
 
The stability criterion remains unchanged.  The real components of all eigenvalues must be 
negative (or zero) for the critical point to be stable.   
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Example III.1.  3 linear ODEs with Constant Coefficients 
 
Consider the system of linear ODEs: 
 

 byA
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           (II.1) 

 
where 
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The critical point, eigenvalues and eigenvectors are 
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All of the real parts of the eigenvalues are negative.  Therefore, we should expect a stable critical 
point.  Some of the eigenvalues have nonzero imaginary parts, therefore we should expect a 
spiral, at least in some dimensions of phase space.   
 
For these higher-dimensional problems, two-dimensional phase plots can be generated by pairing 
any two variables.  On the following page, all three combinations of variables are used to 
generate three phase plots.   
 
In the phase plot featuring y1 and y2, we observe a spiral, as is consistent with the first two 
eigenvalues, which are complex conjugates.  In the phase plot featuring y1 and y3, as well as y2 
and y3, we observe some combination of a spiral and improper node, consistent with their 
respective eigenvalues. 



D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 

 11

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

variable (1)

va
ri

a
b

le
 (

2
)

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

3

variable (1)

va
ri

a
b

le
 (

3
)

 

-1 -0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

2.5

3

variable (2)

va
ri

a
b

le
 (

3
)

 
 
Phase Plots:  Example III.1.  Stable point with features of a spiral point and improper node. 
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IV.  Linear ODEs with variable coefficients  

We now release the constraint of constant coefficients.  In general, we can add functionality to 
both the A  matrix and the b  vector. 

 

    xbyxA
dx

yd
          (IV.1) 

 
and we have initial conditions of the form: 
 
 

oo y)xx(y            (IV.2) 

 
If either A  or b  are functions of x, then the critical point will be a function of x.  This means the 

critical points change in time (if x represents a temporal dimension).  In other words, we now 
have a moving steady state.  For the 2x2 case, we have an analytical solution for the critical 
points 
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where the determinant of the 2x2 matrix is           xaxaxaxaxA

x 1221221122
det  .   

 
The eigenvalues and eigenvectors are functions of x, only if A  is a function of x.  (The 

eigenvalues and eigenvectors are independent of b .)  At any instant in x, the criteria for types 
and stability of critical points holds.  However, since the eigenvalues change with x, it is possible 
for the type and sign of the eigenvalue to change with x.  Consequently, it is possible for the type 
of the critical point and/or the stability to change with x.  If the type and stability hold for a range 
of x, then we can expect the associated behavior of the solution to hold over that range. 
 
Example IV.1.  2 linear ODEs with Constant Coefficients but b=f(x) 
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Since A  is constant, the eigenvalues and eigenvectors are constants 
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The eigenvalues are real and negative, so we know to observe the behavior of a stable improper 
node.   
 
Using equation (IV.3) we find that the critical points as a function of x look like: 
 

0 5 10 15
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

c
ri

ti
c

a
l 

p
o

in
ts

 
-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

critical point yc(1)

c
ri

ti
c

a
l 

p
o

in
t 

y
c

(2
)

 
 
In the figure on the left, we have plotted the first component of the critical point, yc, as a function 
of x in red and the second component of the critical point as a function of x in blue.  In the figure 
on the right, we have plotted yc,2 vs yc,1 as parametric functions of x.  (The figure on the right has 
the same axes as the phase plot.) Let’s call this curve of critical points the critical path. 
 
Below we show several solutions to the ODE, starting from different initial conditions.  The 
starting points of each line are indicated by green squares.  The ending points are indicated by 
red circles. 
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Phase Plots:  Example IV.1.  Stable improper node following moving steady state. 
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We see that the solution is indeed an attractor.  All points lead to the critical path.  Moreover, 
they lead to the critical path in a node-like way, without spiraling.  The curious behavior is at the 
center where we do find a cyclical steady state.  This cyclical steady state is due to the sine 
function in b(x).  It is interesting that the trajectories never actually fall on the black line 
indicated by the critical path, but rather form a cycle about it.  This must be due to the fact that 
the ODEs at time x are heading toward a solution defined by b(x).  However, at some 
incremental time later, x’, the solution has now moved and is defined by b(x’).  Thus, the path of 
the ODE must be altered.  The solution can be said to lag behind the critical path.  All solutions 
eventually find the same lag, as indicated by the fact that regardless of the initial condition, the 
final position (in this case plotted at x=15) is the same. 
 
Example IV.1.  2 linear ODEs with Variable Coefficients  
 

   





















3

2

31

13
y

x
xbyA

dx

yd
        

 
The eigenvalues and eigenvectors are now functions of x, given by  
 

  
            

2

det4
22

2
22112211 xAxaxaxaxa

x x


    (IV.4) 

 
The eigenvalues and eigenvectors are plotted below as a function of x. 
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We can see that the eigenvalues start small and negative; one linearly decreases and the other 
appears to exponentially decrease.  The eigenvectors appear to be approaching asymptotic values 
of [1,0] and [0,1] respectively.  One important observation is that the eigenvalues are always 
negative and always purely real.  Therefore the system will always exhibit the behavior of a 
stable improper node.   
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The critical points are also a function of x and are obtained from eqn (IV.3).  Plots of the critical 
path are given below, both as a function of x and parametrically. 
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The critical points are following exponential decays to a given value.  At long times, this critical 
point will no longer move and will result in a stationary state. 
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Phase Plots:  Example IV.2.  Stable improper node following moving steady state. 

 
This figure shows that we have a stable node for a critical point.  We would expect this because 
our eigenvalues are real and negative.  The only difference between this case and the case where 
the matrix A  is constant is that now our critical point is mobile.  The trajectories follow along 

behind it.  
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V.  Non-Linear ODEs           

Most of the world’s problems are non-linear.  What good does our previous analysis of linear 
ODEs do for us?  Well, it tells us the five types of critical points.  It tells us that the critical 
points are the steady-state solutions.  It tells us that we can understand the behavior of a system 
of ODEs by looking at a phase plot.   
 
We write the generic system of nonlinear ODEs as  
 

 yxf
dx

yd
,           (V.1) 

 
For this system, we can still determine critical points and we can determine the stability of the 
critical points.  We can also determine the type of critical point, at least in the local vicinity 
around each critical point.  Therefore, in the nonlinear case, we cannot determine the type and 
stability of the critical point(s) until we first find the critical point(s).   
 
We use the same generalized definition of the critical points,  
 

 0
dx

dyi  for all ni 1         (III.2) 

 
For the nonlinear system, this results in a system of non-linear algebraic equations 
 

  0, yxf           (V.2) 

 
which we would solve numerically using the Newton-Raphson method or some other appropriate 
numerical method.  The solution to this equation is   0, cyxf  where cy  is a critical point. 

 
We next expand the all functions in a multivariate Taylor series about the critical point and 
truncate after the linear terms.  For a system of 2 ODEs, this is explicitly 
 

        c

y

c

y

cc yxy
dy

df
yxy

dy

df
yyfxyxyf

cc

22
2

1
11

1

1
211211 )()(,)(),(   

        c

y

c

y

cc yxy
dy

df
yxy

dy

df
yyfxyxyf

cc

22
2

2
11

1

2
212212 )()(,)(),(    (V.3) 

 
We have effectively linearized the functions and the linearized ODEs are now, 

      c

y

c

y

cc yxy
dy

df
yxy

dy

df
yyf

dx

dy

cc

22
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1
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1

1
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1 )()(,   



D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 

 17

      c

y

c

y

cc yxy
dy

df
yxy

dy

df
yyf

dx

dy

cc

22
2

2
11

1

2
212

2 )()(,     (V.4) 

 
We can write this in matrix notation as 
 

 byJ
dx

yd
           (V.5) 

 
where J  is the Jacobian, the matrix of first partial derivatives, which has the definition for the 

2x2 as  
 

 


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
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
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
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

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
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2

1

1

1

         (V.6) 

 
and b is a vector of constants, 
 

 

 
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
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cc
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dy

df
y

dy

df
yyf

y
dy

df
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dy

df
yyf

b

cc

cc

2
2

2
1

1

2
212

2
2

1
1

1

1
211

,

,

      (V.7) 

 
The Jacobian used here is the same Jacobian that is used in the Newton-Raphson method.  Once 
we have linearized the ODE, we can use the straightforward procedure described in Section II 
(or III if we have more than 2 equations) to determine the eigenvalues and eigenvectors of the 
Jacobian. 
 
   0det  IJ          (V.8) 

 
From here, we have the eigenvalues and eigenvectors of the problem around a given critical 
point.  This procedure can be repeated for each critical point in the system. 
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Example V.1.  Nonlinear ODEs – Saddle Point 
 
Consider the set of ODEs 
 

 4)(3)( 2
2

1
1  xyxy

dx

dy
 

 )()(3 21
2 xyxy

dx

dy
  

 
A critical point of this system is  
 


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
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c

y  

 
The Jacobian of this system is  
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The eigenvalues and eigenvectors of the Jacobian matrix are 
 

 









3.21480

03.0636-
 










0.80450.5939-

0.5939-0.8045-
W  

 
The eigenvalues are real, therefore we either have a node or a saddle point.  The eigenvalues are 
not all of the same sign.  Therefore, we have a saddle point.  All saddle points are unstable.   
 
The phase plot is shown below. The starting points (green squares) all lead away from the 
critical point (black star) to their respective ending points at x=1.0 (red circles).  There is only 
one path away from the critical point, since the system is a saddle and the other eigenvector led 
to the critical point.  The eigenvector leading away from the critical point is not a straight line 
since the problem is nonlinear.   
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         Phase Plot:  Example V.1. (Unstable) Saddle Point.             Phase Plot:  Example V.2. Stable Spiral Point. 
 
Example V.2.  Nonlinear ODEs – Stable Spiral Point 
 
Consider the set of ODEs 
 

 1)()( 2
2

1
1  xyxy

dx

dy
 

 )()( 21
2 xyxy

dx

dy
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A critical point of this system of equations is 










6180.0
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c

y  

 
In order to determine the eigenvalues, we again linearize the system of ODEs with a Taylor 
series expansion.  The Jacobian of the linearized problem is  
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The eigenvalues and eigenvectors of the Jacobian matrix are 
 

 









0.9930i - 1.1180-0

00.9930i + 1.1180-
       










0.7022i - 0.08340.7022i + 0.0834

0.70710.7071
W  
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The eigenvalues are complex conjugates , therefore we have a spiral point.  The real component 
of the eigenvalues are less than zero.  Therefore, the point is stable.  We should observe the 
behavior of a stable spiral point, at least near the critical point.  Plots of trajectories starting from 
initial conditions near the critical point yield confirm this prediction. 

 
Example V.3.  Nonlinear ODEs – Multiple Steady States 
 
Consider a continuously stirred tank reactor (CSTR) with a mass balance on reactant A given by  
 

AAinA
A VkCQCQC

dt

dC
V  ,  

 
where these terms represent from left to right accumulation of A in the reactor, flow of A into the 
reactor, flow of A out of the reactor and consumption of A via a first-order chemical reaction.  
The reaction rate constant, k, is a function of temperature,  
 







 

RT

E
kk a

o exp  

 
Coupled to this mass balance is an energy balance,  
 

ARApinpp VkCHCCQTCQ
dt

dT
CV    

 
which has the same accumulation, input, output and generation terms in it.  For the sake of 
convenience, we choose to rewrite the mass balance in terms of a dimensionless variable, the 
extent of reaction, which is bounded between 0 (no reaction) and 1 (complete reaction) and is 
defined as  
 

inA

A

C

C
X

,

1  

 
so that the first ODE can be rewritten as  
 

dt

dC

Cdt

dX A

inA,

1
  

 
The variables in these two nonlinear ODEs are the extent of reaction, X , and temperature, T.  
Everything else is assumed constant in this problem.  In this problem, the reaction is exothermic 
(it generates heat) or in other words 0 RH , so that the generation term in the energy balance 
is positive.  This is a key element of this system. 
 
A sample input file is provided below. 
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 function dydt = funkeval(y) 
 x = y(1);       % extent of reaction 
 T = y(2);         % Temperature K 
 Cin = 3.0;        % inlet concentration mol/l 
   C = Cin*(1-x);     % concentration 
 Q = 60e-3;        % volumetric flowrate l/s 
   R = 8.314;        % gas constant J/mol/K 
   Ea = 62800;       % activation energy J/mol 
   ko = 4.48e+6;      % reaction rate prefactor 1/s 
   k = ko*exp(-Ea/(R*T));  % reaction rate constant 1/s 
   V = 18;         % reactor volume l 
   Cp = 4.19e3;      % heat capacity J/kg/K 
   Tin = 298;      % inlet feed temperature K 
   Tref = 298;     % thermodynamic reference temperature K 
   DHr = -2.09e5;   % heat of rxn J/mol 
   rho = 1.0;    % density kg/l 
   dydt(1) = 1/V*(Q*Cin - Q*C - k*C*V);  % mass balance mol/s 
   dydt(2) = 1/(Cp*rho*V)*(Q*Cp*rho*Tin  - Q*Cp*rho*T - 
     DHr*k*C*V);    % NRG balance J/s 
   dydt(1) = -1/Cin*dydt(1);  % convert from concentration to  
            extent 
 
These are the design equations for a continuously stirred-tank reactor with a single first-order 
exothermic reaction, operating under adiabatic conditions. 
 
The unknowns are the extent of reaction and the temperature. 
 
This problem has three steady states.  The critical points of this system of equations are  

 










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x
y

c
, 




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
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2,c
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




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3,c

y  

 
In order to determine the eigenvalues, we again linearize the system of ODEs with a Taylor 
series expansion.  In this case, since we have more than one critical point, we must evaluate the 
Jacobian at each of the steady states.  The Jacobian of the linearized problem is  
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We evaluate this Jacobian at each critical point and get the eigenvalues.  For the first critical 
point, we have 
 

 









0.0027-0.0081-

0000.00.0034-
J   










0.0027-0

00.0034-
 













1.0000-9962.0

0021.00.0866
W  

 
The eigenvalues of the first critical point are real and negative.  Therefore, the first critical point 
will behave like a stable improper node. 
 
For the second critical point, we have 
 

 









0.00700.2495-

0000.00.0050-
J   




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W  

 
The eigenvalues of the second critical point are real.  One is positive and one is negative.  
Therefore, the second critical point will behave like a saddle point, which is always unstable. 
 
For the third and final critical point, we have 
 

 




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

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0.00240.1944-
J   













0.2417i  0.0895-0

00.2417i  0.0895-
 

 

     






 


1.00001.0000

0.0085i  0.00370.0085i - 0.0037
W  

 
The eigenvalues of the third critical point are complex.  The real components of the eigenvalues 
are negative.  Therefore, the third critical point will behave like a stable spiral point. 
 
Some trajectories, based on different initial conditions (different initial concentrations and 
reactor temperatures) are shown below.  The trajectories start at green squares and end at red 
circles.  The time that transpired along each trajectory is 1 minute. 
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(a)  initial temperatures = 300 < T < 500 

initial extent of reactions 0 < x < 1 
duration of trajectory = 1200 sec 

(larger version of plot available on last page of this section)  
 

From the trajectory plots given above we can determine the nature of the critical points (steady 
state solutions in this example).  The low-conversion/low-temperature and the high-
conversion/high-temperature solutions are stable attractors.  The intermediate solution is an 
unstable node.  The eigenvalues associated with the attractors are less than zero.  At least one 
eigenvalue associated with the unstable node is negative. 
 
We can also see some qualitative information about the system.  We can define roughly the 
basins of attraction for the two attractors.  For the coarse grid we used, any initial temperature of 
380 K or higher converged to the high critical point.  Any initial temperature of 340 K or lower 
converged to the low critical point.   For initial temperatures of 360K, those with high initial 
extents of reaction proceeded to the low root; those with low initial extents of reaction converged 
to the high root.   
 
The trajectories that led to the low root, approached with a final tangents that appeared to be 
nearly parallel to the difference vector between the low and middle root.  The trajectories that led 
to the high root, approached with two different final tangents.  The first seemed to be nearly 
parallel to the difference vector between the high and middle root.  The second, which most of 
the trajectories followed, appeared to be roughly perpendicular to the first. 
 
Some initial conditions with low initial extent of reaction and low temperature, proceeded 
through temperatures higher than the high root on their way to the high root.  This is because the 
reactor is full of unreacted product.  It reacts initially, which, since the reaction is exothermic, 
heats up the reactor.  It then takes some time for new feed to enter and cool the reactor to its 
steady state temperature. 
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