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I.  Purpose 

The purpose of this lecture package is not to introduce a new second order numerical solution 
technique for solving ODEs when we already have a very excellent fourth-second order 
numerical solution technique for solving ODEs.  Rather, the purpose is to introduce these second 
order techniques because they are used to solve PDEs.  By first applying the techniques to 
ODEs, we shall see how they fit into the family of methods that include the Euler method and the 
Runge-Kutta method.  When we then see the technique used for the solution of PDEs, it won’t 
seem so foreign. 
 
Additionally, in this document we compare implicit and explicit second order algorithms.  The 
implicit algorithms work only for linear ODEs.  The explicit algorithms are applied to any 
(nonlinear or linear) ODEs.  Again, these implicit techniques are not typically used to solve 
ODEs because if we have a linear ODE we will solve it analytically.  However, the linear 
techniques are used to solve linear PDEs.  We introduce them here, where the application to 
ODEs is familiar and we can clearly compare the advantages and disadvantages of implicit and 
explicit techniques. 

 

II.  Single Ordinary Differential Equation 

Consider the single first-order ODE (either linear or nonlinear) 
 

 ),( tyf
dt

dy
           (1) 

 
with the initial condition 
 
 oo yty )(           (2) 

 
We can again solve this numerically, using an Euler-like formula 
 

 fttyy iiii

~
)( 11            (3) 

 

where f
~

 is an approximation to the derivative over the interval from 1it  to it .  For a second 

order method, the approximation to the derivative is simply an average of the values at 1it  and 

it . 

 

     iiii ytfytff ,,
2

1~
11           (4) 



D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 

 

 3

 
The problem is that we don’t know the value of iy  that appears on the right hand side of 

equation (4).   
 
II.A.  Second Order Method for Generic ODE 
 
In the general case (meaning that equation (1) is either linear or nonlinear in y), we can use the 
Euler method to approximate iy  for the purposes of equation (4). 

 
  1111 ,)(   iiiiii ytfttyy        (5) 

 

We then substitute this value into equation (4) and substitute the resulting value of f
~

 into 
equation (3), yielding a second order method: 
 

      1111111111 ,)(,,
2

1
)(

~
)(   iiiiiiiiiiiiiii ytfttytfytfttyfttyy (6

) 
 
This implementation of the second order method is a member of a class of methods known as 
predictor-corrector methods, because you use Euler’s method to predict iy  and you use equation 

(6) to correct the value.  Specifically, equation (6) is called Heun’s method.  A code that 
implements equation (6) is provided at the end of these notes in appendix A.1. 
 
II.B.  Second Order Implicit Method for Linear ODE 
 
In obtaining equation (6), we were forced to make an additional approximation, namely we had 
to use the Euler method for a preliminary estimate of iy .  If the ODE (eqn. (1)) is linear, then we 

do not have to make this approximation in order to solve the problem. Therefore, an implicit 
method that does not make this approximation will be more accurate than Heun’s method.  When 
we apply this technique to PDEs we will be seeking to gain advantages in accuracy wherever we 
can find them. 
 
We now derive the implicit method.  Consider a linear ODE of the form 
 

 )()()(),( tbtytatyf
dt

dy
         (7) 

 
with the initial condition of equation (2).  We substitute this linear ODE into equation (4) 
obtaining  
 

  iiiiii byabyaf   1112

1~
       (8) 
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where we have used the shorthand notation that )( ii taa  , as we have done for y and b as well. 

We substitute equation (8) into equation (3)  
 

  iiiiiiiiii byabyattyy   11111 2

1
)(      (9) 

 
We solve for the unknown, iy , obtaining 

 
 iiiiiii ByAyA   11,,          (10) 

 
where jiA ,  is the coefficient (in general a function of the independent variable t) in front of the 

jth variable at the ith time, ti, and has the form 
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i bb
tt

B          (12) 

 
This method is classified as an implicit method because the value of the unknown iy  appears on 

both the left hand side and right hand side of equation (9).   
 
Option 1.  Solve for y sequentially 
 
We could proceed as we did in the Euler method, where we evaluate y at t1, then use that result 
to generate y at t2, etc. through repeated applications of equation (10).  This is totally legitimate 
and will lead to the correct approximation of the solution.   
 
A code that implements the sequential solution of this implicit method is given in appendix A.2. 
 
Option 2.  Solve for all y simultaneously 
 
Consider that we divide the independent variable, t, into n intervals, each of size  
 

 
n

tt
t of )( 
            (13) 

 
where is the initial time from the initial condition in equation (2) and tf is the final time, beyond 
which we are no longer interested in the solution of the ODE.  Our approximate solution will be 
evaluated at n+1 points, the initial condition and the n subsequent values of t.  If we designate 
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the solution of the ODE at each of these points as yi for i = 1 to n+1, then we can write the 
following set equations: 
 
 oyy 1      for i = 1     

 
 iiiiiii ByAyA   11,,   for i = 2 to n+1     (14) 

 
This is a system of linear algebraic equations.  It can be written in matrix form as: 
 
 ByA            (15) 

 
where the vector B  is principally defined by equation (12), except for the first entry which is the 
initial condition,  
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          (16) 

 
and where the matrix A  is principally defined by equation (11), except for the first row which is 

the initial condition,  
 

 





















 1,1,1

2,21,2

00

00

00

0001

nnnn AA

AA
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
       (17) 

 
Thus, we have transformed the numerical solution of a linear ODE into the solution of a system 
of linear algebraic equations, which we know how to solve.  One inversion of this matrix 
effectively solve the ODE problem. 
 
The transformation of ODEs to linear algebraic equations through the discretization of the 
independent and dependent variables is a commonly encountered transformation.  It is one that is 
used ubiquitously through-out the solution of PDEs and Integral Equations.  Therefore, it was 
educational to introduce the concept here, even though we would likely never use this 
methodology to solve a single linear ODE as we did here. 
 
Note that the sequential and simultaneous solutions of the implicit method yield (to within 
machine precision) the same result.  The implicit method will yield a more accurate solution than 
Heun’s method. 
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A code that implements the simultaneous solution of this implicit method is given in appendix 
A.3. 
 
II.C.  Comparison of Second Order Explicit and Implicit Methods 
 
 Consider the initial value problem: 
 

 )()( xbyxa
dx

dy
          

 
where we have an initial condition of the form: 
 
 oo yxxy  )(          

 
with the specific values given by: 
 
  2)( xa , )3sin()( xxxb  , 1)0( xy  
 
This IVP has the analytical solution 
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xxxx
e
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x
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We now this ODE using the three second-order methods described above, Heun’s method, the 
implicit sequential method and the implicit simultaneous method.  For all methods, we set xf = 4 
and use n = 100 intervals. 
 
Plots of the solution and absolute error are shown below. 
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From the plot of the solutions, it is difficult to see the difference between the methods for this 
time step.  From the plot of the error, one sees that the errors of the two implicit methods are 
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exactly the same and both are better than Heun’s method.  The waviness of the absolute error is 
due to the non-monotonic nature of the solution. 

III.  Systems of Ordinary Differential Equations 

A general system of first order ODEs can be expressed as  
 

 ),( tyf
dt

yd
           (18) 

 
with the initial conditions  
 
 

oo yty )(           (19) 

 
III.A.  Second Order Method for a System of Generic ODEs 
 
In the general case (the equations are either linear or nonlinear in y , we can write the 

straightforward multi-equation analog of Heun’s method.  We again use Euler’s method to 
predict the value of the function, 
 

 ),()(
~

)( 111111 
 iiiiiiii

p

i
tyfttyfttyy      (20) 

 
We super-scripted this with a p to identify this as the prediction step.  The prediction step is 
followed by the correction step 
 

  ),(),(
2

1
)(

~
)( 111111 i

p

iiiiiiiiii
tyftyfttyfttyy  

   (21) 

 
Therefore, these techniques are sometimes called predictor-corrector methods.  As we did in the 
single equation case, we sequentially solve for each 

i
y  based on 

1i
y . 

 
A code that implements equations (20) and (21) is provided at the end of these notes in appendix 
A.4.  This is essentially Heun’s method extended to a system of ODEs. 
 
III.B.  Second Order Implicit Method for a System of Linear ODE 
 
We can also repeat the derivation for a more accurate second order method if every equation in 
the system of ODEs is linear.  In fact, if the equations are linear, we don’t even need to make the 
approximation that we can isolate the derivatives on the left hand side of the equation, as we did 
above in the general solution.  If the equations are linear, the general system can be written as 
 

 )t(B)t(y)t(A
dt

yd
)t(C          (22) 
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Equation (22) would be identical to equation (19) if )(tC  were the identity matrix.  In solving a 

system of mass and energy balances, this is frequently the case. 
 
The derivation of the method, now becomes more complicated.  We need three indices on the 
elements of )(tA .  The first index indicates the equation.  The second index indicates the 

variable.  The third index indicates the time step, once we have performed the discretization of 
time necessary to obtain the numerical solution.  We will use the notation )(

,
k
jiA  to designate the 

coefficient (the time functionality is now implicit) of the jth variable in the ith equation at 

discretized time tk.  Similarly, )(kA  represents the entire matrix of coefficients at discretized time 

tk. 
 
If C  is a constant matrix, we can discretize equation (22) as  
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    (23) 

 
Once again, you can proceed to solve this problem sequentially or simultaneously.   
 
Option 1.  Solve for y  sequentially 

 

We can rearrange equation (23) to isolate our vector of unknowns )(ky  
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C    (24) 

 

Everything on the right-hand side of equation (24) is known.  You invert and solve for )(ky . 

 
A code that implements the sequential solution of this implicit method is given in appendix A.5. 
 

Option 2.  Solve for all )(ky  simultaneously 

 
We could write equation (24) for all values of k from 1 to n+1 (for a discretization of t involving 
n intervals).  We then have a system of m ODEs, we now have a system of m(n+1) linear 
algebraic equations.  We could invert this larger matrix if we so chose.  In solving all of the 
equations simultaneously, we would have to create a single matrix of unknowns.  We have some 
freedom as to how we choose to order our unknowns.  Two possible arrangements for a system 
with m equations and n time intervals are shown below. 
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In the first arrangement, the unknowns are grouped by variable.  In the second arrangement, the 
unknowns are grouped by time.  The latter form is preferable for two reasons.  First, it reduces 
the bandwidth of the resulting matrix, which equates to a quicker computation.  Second, it also 
facilitates the mathematical description of the system.  Here we assume that the vector of 
unknowns takes the form of the second arrangement. 
 
We then can write a system of m(n+1) linear algebraic equations of the form 
 

 ** BYA            (26) 

 
where, in order to present a compact description of the matrix and vector in equation (26), we 
first rewrite equation (24) as  
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where the matrix, 
kk

M
,

, and the vector, *
kB , are defined by comparison to equation (24). 

  
The matrix and vector used in equation (26) are related to the smaller matrices and vectors used 
in equation (27) by the following equations: 
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and 
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Thus, we have shown how we can transform the numerical solution of a system of linear first-
order ODEs into the solution of a system of linear algebraic equations. 
 
A code that implements the simultaneous solution of this implicit method is left as an exercise 
for the curious reader. 
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Appendix.  Matlab Subroutines 

 
In this section, we provide routines for implementing the various optimization methods 
described above that are not translated from “Numerical Recipes”.  Note that these codes 
correspond to the theory and notation exactly as laid out in this book.  These codes do not 
contain extensive error checking, which would complicate the coding and defeat their purpose as 
learning tools.  That said, these codes work and can be used to solve problems. 
As before, on the course website, two entirely equivalent versions of this code are provided and 
are titled code.m and code_short.m.  The short version is presented here.  The longer version, 
containing instructions and serving more as a learning tool, is not presented here.  The numerical 
mechanics of the two versions of the code are identical. 
 
Code A.1.  Heun’s Method – 1 ODE (heun1_short) 
 
function [x,y]=heun1(n,xo,xf,yo); 
dx = (xf-xo)/n; 
x = zeros(n+1,1); 
for i = 1:1:n+1 
   x(i) = xo + (i-1)*dx; 
end 
y = zeros(n+1,1); 
y(1) = yo; 
for i =  1:1:n 
   x1 = x(i); 
   y1 = y(i); 
   k1 = funkeval(x1,y1); 
   x2 = x(i) + dx; 
   y2 = y(i) + dx*k1; 
   k2 = funkeval(x2,y2); 
   dydx = 1.0/2.0*(k1 + k2); 
   y(i+1) = y(i) + dx*dydx; 
end 
close all; 
iplot = 1; 
if (iplot == 1) 
   plot (x,y,'k-o'), xlabel( 'x' ), ylabel ( 'y' ); 
end 
fid = fopen('heun1_out.txt','w'); 
fprintf(fid,'x                y \n'); 
fprintf(fid,'%23.15e %23.15e   \n', [x,y]'); 
fclose(fid); 
  
function dydx = funkeval(x,y); 
dydx = -1.0*y^2; 
 
An example of using heun1_short is given below. 
 
» [x,y]=heun1_short(10,0,2,1); 
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This program generates outputs in three forms.  First, the x and y vectors are stored in memory 
and can be directly accessed.  Second, the program generates a plot of y vs. x. Third, the program 
generates an output file, heun1_out.txt, that contains x and y vectors in tabulated form. 
 
Code A.2.  Implicit Method, Sequential Solution – 1 ODE (linode_2o_seq_1_short) 
 
function [x,y]=linode_2o_seq_1_short(n,xo,xf,yo); 
dx = (xf-xo)/n; 
x = zeros(n+1,1); 
for i = 1:1:n+1 
   x(i) = xo + (i-1)*dx; 
end 
y = zeros(n+1,1); 
y(1) = yo; 
for i =  2:1:n+1 
   Aii = 1.0 - 0.50*dx*funkeval_a(x(i)); 
   Aij = -1.0 - 0.50*dx*funkeval_a(x(i-1)); 
   Bi = 0.50*dx*(funkeval_b(x(i)) + funkeval_b(x(i-1))); 
   y(i) = 1.0/Aii*(Bi - Aij*y(i-1)); 
end 
close all; 
iplot = 1; 
if (iplot == 1) 
   plot (x,y,'k-o'), xlabel( 'x' ), ylabel ( 'y' ); 
end 
% 
%  write result to file 'linode_2o_seq_1_out.txt' 
% 
fid = fopen('linode_2o_seq_1_out.txt','w'); 
fprintf(fid,'x                y \n'); 
fprintf(fid,'%23.15e %23.15e   \n', [x,y]'); 
fclose(fid); 
  
%  dydx = a(x)*y(x) + b(x); 
function a = funkeval_a(x); 
a = -x; 
  
function b = funkeval_b(x); 
b = sin(x); 
 
An example of using linode_2o_seq_1_short is given below. 
 
>> [x,y]=linode_2o_seq_1_short(100,0,10,1); 
 
 
Code A.3.  Implicit Method, Simultaneous Solution – 1 ODE (linode_2o_sim_1_short) 
 
function [x,y]=linode_2o_sim_1_short(n,xo,xf,yo); 
dx = (xf-xo)/n; 
x = zeros(n+1,1); 
for i = 1:1:n+1 
   x(i) = xo + (i-1)*dx; 
end 
y = zeros(n+1,1); 
A = zeros(n+1,n+1); 
B = zeros(n+1,1); 
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A(1,1) = 1.0; 
B(1) = yo; 
for i =  2:1:n+1 
   B(i) = 0.50*dx*(funkeval_b(x(i)) + funkeval_b(x(i-1))); 
   A(i,i) = 1.0 - 0.50*dx*funkeval_a(x(i)); 
   A(i,i-1) = -1.0 - 0.50*dx*funkeval_a(x(i-1)); 
end 
invA = inv(A); 
y = invA*B; 
close all; 
iplot = 1; 
if (iplot == 1) 
   plot (x,y,'k-o'), xlabel( 'x' ), ylabel ( 'y' ); 
end 
  
fid = fopen('linode_2o_sim_1_out.txt','w'); 
fprintf(fid,'x                y \n'); 
fprintf(fid,'%23.15e %23.15e   \n', [x,y]'); 
fclose(fid); 
  
%  dydx = a(x)*y(x) + b(x); 
  
function a = funkeval_a(x); 
a = -x; 
  
function b = funkeval_b(x); 
b = sin(x); 
 
An example of using linode_2o_sim_1_short is given below. 
 
>> [x,y]=linode_2o_sim_1_short(100,0,10,1); 
 
 
Code A.4.  Heun’s Method – n ODEs (heunn_short) 
 
function [x,y]=heunn_short(n,xo,xf,yo); 
dx = (xf-xo)/n; 
x = zeros(n+1,1); 
for i = 1:1:n+1 
   x(i) = xo + (i-1)*dx; 
end 
m=max(size(yo)); 
y = zeros(n+1,m); 
y(1,1:m) = yo(1:m); 
dydx = zeros(1,m); 
ytemp = zeros(1,m); 
k1 = zeros(1,m); 
k2 = zeros(1,m); 
for i =  1:1:n 
   x1 = x(i); 
   ytemp(1:m) = y(i,1:m); 
   k1(1:m) = funkeval(x1,ytemp); 
   x2 = x(i) + dx; 
   ytemp(1:m) = y(i,1:m) + dx*k1(1:m); 
   k2(1:m) = funkeval(x2,ytemp); 
   dydx(1:m) = 1.0/2.0*(k1(1:m) + k2(1:m)); 
   y(i+1,1:m) = y(i,1:m) + dx*dydx(1:m); 
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end 
close all; 
iplot = 1; 
if (iplot == 1) 
   for i = 1:1:m 
      color_index = get_plot_color(i); 
      plot (x(:),y(:,i),color_index);  
      hold on; 
   end 
   hold off; 
   xlabel( 'x' );  
   ylabel ( 'y' ); 
   legend (int2str([1:m]')); 
end 
fid = fopen('heunn_out.txt','w'); 
fprintf(fid,'x  y(1) ... y(m) \n'); 
for i = 1:1:n+1 
   fprintf(fid,'%23.15e ', x(i)); 
   for j = 1:1:m 
      fprintf(fid,'%23.15e ', y(i,j)); 
   end 
   fprintf(fid,' \n'); 
end 
fclose(fid); 
  
function dydx = funkeval(x,y); 
dydx(1) = -1.0*y(1) - 2.0*y(2) - 0.5*y(3)^2; 
dydx(2) = -0.1*y(1) - 4.0*y(2) - 0.5*y(3); 
dydx(3) = -0.5*y(1) - 0.4*y(2) - 0.2*y(3); 
 
An example of using heunn_short is given below. 
 
>> [x,y1]=heunn_short(100,0,10,[1,1,1]); 
 
 
Code A.5.  Implicit Method, Sequential Solution – n ODEs (linode_2o_seq_n_short) 
 
function [x,y]=linode_2o_seq_n(n,xo,xf,yo); 
dx = (xf-xo)/n; 
x = zeros(n+1,1); 
for i = 1:1:n+1 
   x(i) = xo + (i-1)*dx; 
end 
m=max(size(yo)); 
y = zeros(n+1,m); 
y(1,1:m) = yo(1:m); 
for k =  2:1:n+1 
   AA = zeros(m,m); 
   BB = zeros(m,1); 
   for i = 1:1:m 
      BB(i) = 0.5*dx*(funkeval_b(i,x(k)) + funkeval_b(i,x(k-1))); 
      for j = 1:1:m 
         AA(i,j) = funkeval_c(i,j,x(k))   - 0.50*dx*funkeval_a(i,j,x(k)); 
         term =    funkeval_c(i,j,x(k-1)) + 0.50*dx*funkeval_a(i,j,x(k-1)); 
         BB(i) = BB(i) + term*y(k-1,j); 
      end 
   end 
   invAA = inv(AA); 
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   y(k,1:m) = invAA*BB; 
end 
close all; 
iplot = 1; 
if (iplot == 1) 
   for i = 1:1:m 
      color_index = get_plot_color(i); 
      plot (x(:),y(:,i),color_index);  
      hold on; 
   end 
   hold off; 
   xlabel( 'x' );  
   ylabel ( 'y' ); 
   legend (int2str([1:m]')); 
end 
fid = fopen('linode_2o_seq_n_out.txt','w'); 
fprintf(fid,'x  y(1) ... y(m) \n'); 
for i = 1:1:n+1 
   fprintf(fid,'%23.15e ', x(i)); 
   for j = 1:1:m 
      fprintf(fid,'%23.15e ', y(i,j)); 
   end 
   fprintf(fid,' \n'); 
end 
fclose(fid); 
  
%  c(x)*dy_/dx = A(x)*y_ + b(x); 
function aout = funkeval_a(i,j,x); 
amat = [0 1; -1 -1]; 
aout = amat(i,j); 
  
function bout = funkeval_b(i,x); 
bvec = [1/(1+x); 0]; 
bout = bvec(i); 
  
function cout = funkeval_c(i,j,x); 
cmat = [1 0; 0 1]; 
cout = cmat(i,j); 
 
An example of using linode_2o_seq_n_short is given below. 
 
>> [x,y1]=linode_2o_seq_n_short(100,0,10,[1,1]); 
 
 


