
D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 1

Comparison of Second Order Numerical Techniques

for Linear and Non-Linear ODEs

David Keffer
Department of Chemical Engineering

University of Tennessee, Knoxville
date begun: September 1999
updated: October 10, 2005

updated again: February 18, 2014

Table of Contents

I. Purpose ... 2
II. Single Ordinary Differential Equation .. 2

II.A. Second Order Method for Generic ODE ... 3
II.B. Second Order Implicit Method for Linear ODE .. 3

Option 1. Solve for y sequentially ... 4
Option 2. Solve for all y simultaneously .. 4

II.C. Comparison of Second Order Explicit and Implicit Methods ... 6
III. Systems of Ordinary Differential Equations .. 7

III.A. Second Order Method for a System of Generic ODEs .. 7
III.B. Second Order Implicit Method for a System of Linear ODE .. 7

Option 1. Solve for y sequentially .. 8

Option 2. Solve for all)(ky simultaneously .. 8

Appendix. Matlab Subroutines .. 11
Code A.1. Heun’s Method – 1 ODE (heun1_short) .. 11
Code A.2. Implicit Method, Sequential Solution – 1 ODE (linode_2o_seq_1_short) 12
Code A.3. Implicit Method, Simultaneous Solution – 1 ODE (linode_2o_sim_1_short) 12
Code A.4. Heun’s Method – n ODEs (heunn_short) ... 13
Code A.5. Implicit Method, Sequential Solution – n ODEs (linode_2o_seq_n_short) 14

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 2

I. Purpose

The purpose of this lecture package is not to introduce a new second order numerical solution
technique for solving ODEs when we already have a very excellent fourth-second order
numerical solution technique for solving ODEs. Rather, the purpose is to introduce these second
order techniques because they are used to solve PDEs. By first applying the techniques to
ODEs, we shall see how they fit into the family of methods that include the Euler method and the
Runge-Kutta method. When we then see the technique used for the solution of PDEs, it won’t
seem so foreign.

Additionally, in this document we compare implicit and explicit second order algorithms. The
implicit algorithms work only for linear ODEs. The explicit algorithms are applied to any
(nonlinear or linear) ODEs. Again, these implicit techniques are not typically used to solve
ODEs because if we have a linear ODE we will solve it analytically. However, the linear
techniques are used to solve linear PDEs. We introduce them here, where the application to
ODEs is familiar and we can clearly compare the advantages and disadvantages of implicit and
explicit techniques.

II. Single Ordinary Differential Equation

Consider the single first-order ODE (either linear or nonlinear)

),(tyf
dt

dy
 (1)

with the initial condition

 oo yty )((2)

We can again solve this numerically, using an Euler-like formula

 fttyy iiii

~
)(11   (3)

where f
~

 is an approximation to the derivative over the interval from 1it to it . For a second

order method, the approximation to the derivative is simply an average of the values at 1it and

it .

     iiii ytfytff ,,
2

1~
11   (4)

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 3

The problem is that we don’t know the value of iy that appears on the right hand side of

equation (4).

II.A. Second Order Method for Generic ODE

In the general case (meaning that equation (1) is either linear or nonlinear in y), we can use the
Euler method to approximate iy for the purposes of equation (4).

  1111 ,)(  iiiiii ytfttyy (5)

We then substitute this value into equation (4) and substitute the resulting value of f
~

 into
equation (3), yielding a second order method:

      1111111111 ,)(,,
2

1
)(

~
)(  iiiiiiiiiiiiiii ytfttytfytfttyfttyy (6

)

This implementation of the second order method is a member of a class of methods known as
predictor-corrector methods, because you use Euler’s method to predict iy and you use equation

(6) to correct the value. Specifically, equation (6) is called Heun’s method. A code that
implements equation (6) is provided at the end of these notes in appendix A.1.

II.B. Second Order Implicit Method for Linear ODE

In obtaining equation (6), we were forced to make an additional approximation, namely we had
to use the Euler method for a preliminary estimate of iy . If the ODE (eqn. (1)) is linear, then we

do not have to make this approximation in order to solve the problem. Therefore, an implicit
method that does not make this approximation will be more accurate than Heun’s method. When
we apply this technique to PDEs we will be seeking to gain advantages in accuracy wherever we
can find them.

We now derive the implicit method. Consider a linear ODE of the form

)()()(),(tbtytatyf
dt

dy
 (7)

with the initial condition of equation (2). We substitute this linear ODE into equation (4)
obtaining

  iiiiii byabyaf   1112

1~
 (8)

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 4

where we have used the shorthand notation that)(ii taa  , as we have done for y and b as well.

We substitute equation (8) into equation (3)

  iiiiiiiiii byabyattyy   11111 2

1
)((9)

We solve for the unknown, iy , obtaining

 iiiiiii ByAyA   11,, (10)

where jiA , is the coefficient (in general a function of the independent variable t) in front of the

jth variable at the ith time, ti, and has the form

 

 


















ji if
2

t
-1-

ji if
2

t
-1

1i

1i

,

j
i

j
i

ji

a
t

a
t

A (11)

  1
1

2

)(


 


 ii
ii

i bb
tt

B (12)

This method is classified as an implicit method because the value of the unknown iy appears on

both the left hand side and right hand side of equation (9).

Option 1. Solve for y sequentially

We could proceed as we did in the Euler method, where we evaluate y at t1, then use that result
to generate y at t2, etc. through repeated applications of equation (10). This is totally legitimate
and will lead to the correct approximation of the solution.

A code that implements the sequential solution of this implicit method is given in appendix A.2.

Option 2. Solve for all y simultaneously

Consider that we divide the independent variable, t, into n intervals, each of size

n

tt
t of)(
 (13)

where is the initial time from the initial condition in equation (2) and tf is the final time, beyond
which we are no longer interested in the solution of the ODE. Our approximate solution will be
evaluated at n+1 points, the initial condition and the n subsequent values of t. If we designate

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 5

the solution of the ODE at each of these points as yi for i = 1 to n+1, then we can write the
following set equations:

 oyy 1 for i = 1

 iiiiiii ByAyA   11,, for i = 2 to n+1 (14)

This is a system of linear algebraic equations. It can be written in matrix form as:

 ByA  (15)

where the vector B is principally defined by equation (12), except for the first entry which is the
initial condition,





















1

2

n

o

B

B

y

B


 (16)

and where the matrix A is principally defined by equation (11), except for the first row which is

the initial condition,





















 1,1,1

2,21,2

00

00

00

0001

nnnn AA

AA
A


 (17)

Thus, we have transformed the numerical solution of a linear ODE into the solution of a system
of linear algebraic equations, which we know how to solve. One inversion of this matrix
effectively solve the ODE problem.

The transformation of ODEs to linear algebraic equations through the discretization of the
independent and dependent variables is a commonly encountered transformation. It is one that is
used ubiquitously through-out the solution of PDEs and Integral Equations. Therefore, it was
educational to introduce the concept here, even though we would likely never use this
methodology to solve a single linear ODE as we did here.

Note that the sequential and simultaneous solutions of the implicit method yield (to within
machine precision) the same result. The implicit method will yield a more accurate solution than
Heun’s method.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 6

A code that implements the simultaneous solution of this implicit method is given in appendix
A.3.

II.C. Comparison of Second Order Explicit and Implicit Methods

 Consider the initial value problem:

)()(xbyxa
dx

dy


where we have an initial condition of the form:

 oo yxxy )(

with the specific values given by:

 2)(xa ,)3sin()(xxxb  , 1)0(xy

This IVP has the analytical solution

       











)3cos(1239)3sin(526
169

1

169

157 2

xxxx
e

xy
x

nh

We now this ODE using the three second-order methods described above, Heun’s method, the
implicit sequential method and the implicit simultaneous method. For all methods, we set xf = 4
and use n = 100 intervals.

Plots of the solution and absolute error are shown below.

0 0.5 1 1.5 2 2.5 3 3.5 4
-1.5

-1

-0.5

0

0.5

1

x

y

analytical

Heun

linear, sequential

linear,simultaneous

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5
x 10

-3

x

ab
so

lu
te

 e
rr

or

Heun

linear, sequential

linear,simultaneous

From the plot of the solutions, it is difficult to see the difference between the methods for this
time step. From the plot of the error, one sees that the errors of the two implicit methods are

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 7

exactly the same and both are better than Heun’s method. The waviness of the absolute error is
due to the non-monotonic nature of the solution.

III. Systems of Ordinary Differential Equations

A general system of first order ODEs can be expressed as

),(tyf
dt

yd
 (18)

with the initial conditions

oo yty )((19)

III.A. Second Order Method for a System of Generic ODEs

In the general case (the equations are either linear or nonlinear in y , we can write the

straightforward multi-equation analog of Heun’s method. We again use Euler’s method to
predict the value of the function,

),()(
~

)(111111 
 iiiiiiii

p

i
tyfttyfttyy (20)

We super-scripted this with a p to identify this as the prediction step. The prediction step is
followed by the correction step

  ),(),(
2

1
)(

~
)(111111 i

p

iiiiiiiiii
tyftyfttyfttyy  

 (21)

Therefore, these techniques are sometimes called predictor-corrector methods. As we did in the
single equation case, we sequentially solve for each

i
y based on

1i
y .

A code that implements equations (20) and (21) is provided at the end of these notes in appendix
A.4. This is essentially Heun’s method extended to a system of ODEs.

III.B. Second Order Implicit Method for a System of Linear ODE

We can also repeat the derivation for a more accurate second order method if every equation in
the system of ODEs is linear. In fact, if the equations are linear, we don’t even need to make the
approximation that we can isolate the derivatives on the left hand side of the equation, as we did
above in the general solution. If the equations are linear, the general system can be written as

)t(B)t(y)t(A
dt

yd
)t(C  (22)

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 8

Equation (22) would be identical to equation (19) if)(tC were the identity matrix. In solving a

system of mass and energy balances, this is frequently the case.

The derivation of the method, now becomes more complicated. We need three indices on the
elements of)(tA . The first index indicates the equation. The second index indicates the

variable. The third index indicates the time step, once we have performed the discretization of
time necessary to obtain the numerical solution. We will use the notation)(

,
k
jiA to designate the

coefficient (the time functionality is now implicit) of the jth variable in the ith equation at

discretized time tk. Similarly,)(kA represents the entire matrix of coefficients at discretized time

tk.

If C is a constant matrix, we can discretize equation (22) as

    )()()()1()1()1(

1

)1()(

2

1 kkkkkk

kk

kk

ByAByA
tt

yy
C 



 





 (23)

Once again, you can proceed to solve this problem sequentially or simultaneously.

Option 1. Solve for y sequentially

We can rearrange equation (23) to isolate our vector of unknowns)(ky

  )1()()1()1()()(

222
 






 





 

 kkkkkk BB
t

yA
t

CyA
t

C (24)

Everything on the right-hand side of equation (24) is known. You invert and solve for)(ky .

A code that implements the sequential solution of this implicit method is given in appendix A.5.

Option 2. Solve for all)(ky simultaneously

We could write equation (24) for all values of k from 1 to n+1 (for a discretization of t involving
n intervals). We then have a system of m ODEs, we now have a system of m(n+1) linear
algebraic equations. We could invert this larger matrix if we so chose. In solving all of the
equations simultaneously, we would have to create a single matrix of unknowns. We have some
freedom as to how we choose to order our unknowns. Two possible arrangements for a system
with m equations and n time intervals are shown below.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 9

























































)1(

)2(

)1(

)1(
2

)2(
2

)1(
2

)1(
1

)2(
1

)1(
1

n
m

m

m

n

n

y

y

y

y

y

y

y

y

y

Y









 or

























)1(

)(

)2(

)1(

n

n

y

y

y

y

Y  (25)

In the first arrangement, the unknowns are grouped by variable. In the second arrangement, the
unknowns are grouped by time. The latter form is preferable for two reasons. First, it reduces
the bandwidth of the resulting matrix, which equates to a quicker computation. Second, it also
facilitates the mathematical description of the system. Here we assume that the vector of
unknowns takes the form of the second arrangement.

We then can write a system of m(n+1) linear algebraic equations of the form

 ** BYA  (26)

where, in order to present a compact description of the matrix and vector in equation (26), we
first rewrite equation (24) as

 *)1(

1,

)(

, k
k

kk

k

kk
ByMyM  


 (27)

where the matrix,
kk

M
,

, and the vector, *
kB , are defined by comparison to equation (24).

The matrix and vector used in equation (26) are related to the smaller matrices and vectors used
in equation (27) by the following equations:

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 10

























 1,1,1

3,32,3

2,21,2
*

000

000

000

000

0000

nnnn
MM

MM

MM

I

A


 (28)

and




























*

1

*
3

*
2

*

n

o

B

B

B

y

B



 (29)

Thus, we have shown how we can transform the numerical solution of a system of linear first-
order ODEs into the solution of a system of linear algebraic equations.

A code that implements the simultaneous solution of this implicit method is left as an exercise
for the curious reader.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 11

Appendix. Matlab Subroutines

In this section, we provide routines for implementing the various optimization methods
described above that are not translated from “Numerical Recipes”. Note that these codes
correspond to the theory and notation exactly as laid out in this book. These codes do not
contain extensive error checking, which would complicate the coding and defeat their purpose as
learning tools. That said, these codes work and can be used to solve problems.
As before, on the course website, two entirely equivalent versions of this code are provided and
are titled code.m and code_short.m. The short version is presented here. The longer version,
containing instructions and serving more as a learning tool, is not presented here. The numerical
mechanics of the two versions of the code are identical.

Code A.1. Heun’s Method – 1 ODE (heun1_short)

function [x,y]=heun1(n,xo,xf,yo);
dx = (xf-xo)/n;
x = zeros(n+1,1);
for i = 1:1:n+1
 x(i) = xo + (i-1)*dx;
end
y = zeros(n+1,1);
y(1) = yo;
for i = 1:1:n
 x1 = x(i);
 y1 = y(i);
 k1 = funkeval(x1,y1);
 x2 = x(i) + dx;
 y2 = y(i) + dx*k1;
 k2 = funkeval(x2,y2);
 dydx = 1.0/2.0*(k1 + k2);
 y(i+1) = y(i) + dx*dydx;
end
close all;
iplot = 1;
if (iplot == 1)
 plot (x,y,'k-o'), xlabel('x'), ylabel ('y');
end
fid = fopen('heun1_out.txt','w');
fprintf(fid,'x y \n');
fprintf(fid,'%23.15e %23.15e \n', [x,y]');
fclose(fid);

function dydx = funkeval(x,y);
dydx = -1.0*y^2;

An example of using heun1_short is given below.

» [x,y]=heun1_short(10,0,2,1);

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 12

This program generates outputs in three forms. First, the x and y vectors are stored in memory
and can be directly accessed. Second, the program generates a plot of y vs. x. Third, the program
generates an output file, heun1_out.txt, that contains x and y vectors in tabulated form.

Code A.2. Implicit Method, Sequential Solution – 1 ODE (linode_2o_seq_1_short)

function [x,y]=linode_2o_seq_1_short(n,xo,xf,yo);
dx = (xf-xo)/n;
x = zeros(n+1,1);
for i = 1:1:n+1
 x(i) = xo + (i-1)*dx;
end
y = zeros(n+1,1);
y(1) = yo;
for i = 2:1:n+1
 Aii = 1.0 - 0.50*dx*funkeval_a(x(i));
 Aij = -1.0 - 0.50*dx*funkeval_a(x(i-1));
 Bi = 0.50*dx*(funkeval_b(x(i)) + funkeval_b(x(i-1)));
 y(i) = 1.0/Aii*(Bi - Aij*y(i-1));
end
close all;
iplot = 1;
if (iplot == 1)
 plot (x,y,'k-o'), xlabel('x'), ylabel ('y');
end
%
% write result to file 'linode_2o_seq_1_out.txt'
%
fid = fopen('linode_2o_seq_1_out.txt','w');
fprintf(fid,'x y \n');
fprintf(fid,'%23.15e %23.15e \n', [x,y]');
fclose(fid);

% dydx = a(x)*y(x) + b(x);
function a = funkeval_a(x);
a = -x;

function b = funkeval_b(x);
b = sin(x);

An example of using linode_2o_seq_1_short is given below.

>> [x,y]=linode_2o_seq_1_short(100,0,10,1);

Code A.3. Implicit Method, Simultaneous Solution – 1 ODE (linode_2o_sim_1_short)

function [x,y]=linode_2o_sim_1_short(n,xo,xf,yo);
dx = (xf-xo)/n;
x = zeros(n+1,1);
for i = 1:1:n+1
 x(i) = xo + (i-1)*dx;
end
y = zeros(n+1,1);
A = zeros(n+1,n+1);
B = zeros(n+1,1);

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 13

A(1,1) = 1.0;
B(1) = yo;
for i = 2:1:n+1
 B(i) = 0.50*dx*(funkeval_b(x(i)) + funkeval_b(x(i-1)));
 A(i,i) = 1.0 - 0.50*dx*funkeval_a(x(i));
 A(i,i-1) = -1.0 - 0.50*dx*funkeval_a(x(i-1));
end
invA = inv(A);
y = invA*B;
close all;
iplot = 1;
if (iplot == 1)
 plot (x,y,'k-o'), xlabel('x'), ylabel ('y');
end

fid = fopen('linode_2o_sim_1_out.txt','w');
fprintf(fid,'x y \n');
fprintf(fid,'%23.15e %23.15e \n', [x,y]');
fclose(fid);

% dydx = a(x)*y(x) + b(x);

function a = funkeval_a(x);
a = -x;

function b = funkeval_b(x);
b = sin(x);

An example of using linode_2o_sim_1_short is given below.

>> [x,y]=linode_2o_sim_1_short(100,0,10,1);

Code A.4. Heun’s Method – n ODEs (heunn_short)

function [x,y]=heunn_short(n,xo,xf,yo);
dx = (xf-xo)/n;
x = zeros(n+1,1);
for i = 1:1:n+1
 x(i) = xo + (i-1)*dx;
end
m=max(size(yo));
y = zeros(n+1,m);
y(1,1:m) = yo(1:m);
dydx = zeros(1,m);
ytemp = zeros(1,m);
k1 = zeros(1,m);
k2 = zeros(1,m);
for i = 1:1:n
 x1 = x(i);
 ytemp(1:m) = y(i,1:m);
 k1(1:m) = funkeval(x1,ytemp);
 x2 = x(i) + dx;
 ytemp(1:m) = y(i,1:m) + dx*k1(1:m);
 k2(1:m) = funkeval(x2,ytemp);
 dydx(1:m) = 1.0/2.0*(k1(1:m) + k2(1:m));
 y(i+1,1:m) = y(i,1:m) + dx*dydx(1:m);

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 14

end
close all;
iplot = 1;
if (iplot == 1)
 for i = 1:1:m
 color_index = get_plot_color(i);
 plot (x(:),y(:,i),color_index);
 hold on;
 end
 hold off;
 xlabel('x');
 ylabel ('y');
 legend (int2str([1:m]'));
end
fid = fopen('heunn_out.txt','w');
fprintf(fid,'x y(1) ... y(m) \n');
for i = 1:1:n+1
 fprintf(fid,'%23.15e ', x(i));
 for j = 1:1:m
 fprintf(fid,'%23.15e ', y(i,j));
 end
 fprintf(fid,' \n');
end
fclose(fid);

function dydx = funkeval(x,y);
dydx(1) = -1.0*y(1) - 2.0*y(2) - 0.5*y(3)^2;
dydx(2) = -0.1*y(1) - 4.0*y(2) - 0.5*y(3);
dydx(3) = -0.5*y(1) - 0.4*y(2) - 0.2*y(3);

An example of using heunn_short is given below.

>> [x,y1]=heunn_short(100,0,10,[1,1,1]);

Code A.5. Implicit Method, Sequential Solution – n ODEs (linode_2o_seq_n_short)

function [x,y]=linode_2o_seq_n(n,xo,xf,yo);
dx = (xf-xo)/n;
x = zeros(n+1,1);
for i = 1:1:n+1
 x(i) = xo + (i-1)*dx;
end
m=max(size(yo));
y = zeros(n+1,m);
y(1,1:m) = yo(1:m);
for k = 2:1:n+1
 AA = zeros(m,m);
 BB = zeros(m,1);
 for i = 1:1:m
 BB(i) = 0.5*dx*(funkeval_b(i,x(k)) + funkeval_b(i,x(k-1)));
 for j = 1:1:m
 AA(i,j) = funkeval_c(i,j,x(k)) - 0.50*dx*funkeval_a(i,j,x(k));
 term = funkeval_c(i,j,x(k-1)) + 0.50*dx*funkeval_a(i,j,x(k-1));
 BB(i) = BB(i) + term*y(k-1,j);
 end
 end
 invAA = inv(AA);

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

 15

 y(k,1:m) = invAA*BB;
end
close all;
iplot = 1;
if (iplot == 1)
 for i = 1:1:m
 color_index = get_plot_color(i);
 plot (x(:),y(:,i),color_index);
 hold on;
 end
 hold off;
 xlabel('x');
 ylabel ('y');
 legend (int2str([1:m]'));
end
fid = fopen('linode_2o_seq_n_out.txt','w');
fprintf(fid,'x y(1) ... y(m) \n');
for i = 1:1:n+1
 fprintf(fid,'%23.15e ', x(i));
 for j = 1:1:m
 fprintf(fid,'%23.15e ', y(i,j));
 end
 fprintf(fid,' \n');
end
fclose(fid);

% c(x)*dy_/dx = A(x)*y_ + b(x);
function aout = funkeval_a(i,j,x);
amat = [0 1; -1 -1];
aout = amat(i,j);

function bout = funkeval_b(i,x);
bvec = [1/(1+x); 0];
bout = bvec(i);

function cout = funkeval_c(i,j,x);
cmat = [1 0; 0 1];
cout = cmat(i,j);

An example of using linode_2o_seq_n_short is given below.

>> [x,y1]=linode_2o_seq_n_short(100,0,10,[1,1]);

