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Homework Assignment Number Five Solutions 
 
Problem (1)  Single Non-Linear Parabolic PDE 
 The one-dimensional heat equation can describe heat transfer in a material with both heat 
conduction and radiative heat loss. 
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where the following variables [with units] are given as 
 temperature in the material T [K] 
 surrounding temperature 300sT  [K] 

 axial position along material z [m] 
 thermal conductivity k 401 [J/K/m/s] (for Cu) 
 mass density   8960 [kg/m3] (for Cu) 

 heat capacity 6.384pC  [J/kg/K] (for Cu) 

 Stefan–Boltzmann constant 8105.670373  x  [J/s/m2/K4] 
 gray body permittivity 15.0  (for dull Cu) 
 surface area to volume ratio 200S  [m-1] (for a cylindrical rod of diameter 0.01 m) 
 
A cylindrical Cu rod of diameter 0.01 m and length 0.1 m is initially at 1000)0,( tzT  K.  
One end of the rod is maintained at 1000),0(  tzT K.  The other end of the rod is insulated, 

0
1.0


zdz

dT
 K/m.   

 
(a)  Plot the transient behavior.   
(b) Find the approximate steady-state temperature in the material at z=0.1 m. 
 
Solution: 
 
This is a single non-linear parabolic PDE with one spatial dimension and a Dirichlet boundary 
condition at z=0 and a Neumann boundary condition at z=0.1.  To solve this problem, I will use 
the code parapde_1_anyBC.m. 
 
I modified the input functions in parapde_1_anyBC.m as follows. 
 
I assigned the appropriate type of boundary conditions. 
 
BC(1) = 'D'; 
BC(2) = 'N'; 
 
I set the final time to 100 seconds and chose dt to be 0.1 seconds, so I had 1000 temporal 
intervals. 
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% discretize time 
to = 0; 
tf = 1.0e+2; 
dt = 1.0e-1; 
 
The rod spans from 0 to 0.1 meter.  I set dx to be 0.005 m, so I had 20 spatial intervals. 
 
% discretize space 
xo = 0; 
xf = 0.1; 
dx = 5.0e-3; 
 
I defined the PDE in the following function.   
  
% 
%  function defining PDE 
% 
function k = pdefunk(x,t,y,dydx,d2ydx2); 
% 
Temp = y; 
% rho = density [kg/m^3] 
rho = 8960.0; 
% Cp = heat capacity [J/kg/K] 
Cp = 384.6; 
% k = thermal conductivity [W/m/K] 
k = 401.0; 
%  alpha = thermal diffusivity 
alpha = k/rho/Cp; 
% length of rod [m] 
L = 0.1; 
% diameter in [m] 
radius = 0.1; 
diameter = 2.0*radius; 
% surface Area in [m^2] 
Area = pi*diameter*L; 
% Volume in [m^3] 
Volume = pi/4*diameter^2*L; 
% surface area to volume ratio 
S = Area/Volume; 
%  Temperature of the surroundings [K] 
Tsurround = 300.0; 
% Stefan-Boltzmann constant [J/s/m^2/K^4] 
sigma = 5.670373e-8; 
% gray body permittivity [dimensionless] 
eps = 0.15; 
fac = eps*sigma*S/(rho*Cp); 
k = alpha*d2ydx2 - fac*(Temp^4 - Tsurround^4); 
 
I defined the IC and BCs in the functions below. 
 
% 
%  function defining initial condition 
% 
  
function ic = icfunk(x); 
ic = 1000; 
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% 
%  functions defining LHS boundary condition 
% 
  
function f = aBCo(t); 
f = 1; 
  
function f = bBCo(t); 
f = 0; 
  
function f = cBCo(t); 
f = -1000; 
  
% 
%  functions defining RHS boundary condition 
% 
 
function f = aBCf(t); 
f = 0; 
  
function f = bBCf(t); 
f = 1; 
  
function f = cBCf(t); 
f = 0; 
 
 
At the command line prompt, I typed 
 
[xvec,tvec,Tmat] = parapde_1_anyBC; 
 
 This command generated the following plot. 
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To find the last value at x = 0.1 m, I confirmed that I knew the correct spatial and temporal 
indices. 
 
>> xvec(22) 
ans =    0.1000 
 
>> tvec(1001) 
ans =   100 
 
>> Tmat(22,1001) 
ans =  998.0308 
 
Therefore the temperature at the end at 100 seconds is 998.03 K. 
 
I don’t know that this is steady state.  I can run the simulation longer.  If I change nothing but the 
final time to 1000 seconds, then I generate the data point 
 
>> Tmat(22,10001) 
ans =  997.9108 
 
Therefore the temperature at the end at 1000 seconds is 997.91 K. 
The two answers agree to three digits, so we are pretty close to the steady state solution, but we 
can run for a longer time.   If I change nothing but the final time to 5000 seconds, then I generate 
the data point 
 
>> Tmat(22,50001) 
ans =  997.9108 
 
Therefore the temperature at the end at 5000 seconds is 997.91 K. 
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Problem (2)  System of Non-Linear Parabolic PDEs 
 Consider a plug flow reactor.  (This is a pipe with a reaction taking place in the fluid flowing 
inside it.  Consider the irreversible reaction  
 
 A + 2B -->  C + 2D 
 
taking place in a non-reactive solvent. 
 
The molar balance for each component is given by  
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where z is the spatial dimension in the axial direction, t is time, Ci is the molar concentration of 
species i, v is the axial velocity, Di is the diffusion coefficient of species i,  i is the stochiometric 
for species i, (namely -1, -2, +1, +2 and 0 for A, B, C, D, and S respectively) and r is the reaction 
rate.  The reaction rate is given by  
 

2
BACkCr   

 
where k is the rate constant.  Assume the reactor is operated isothermally so we have no need for 
an energy balance. 
 
The pipe is 10 m long with a diameter of 0.1 m.  The velocity is 0.1 m/s.  The diffusivities are all 

1.0x10-9 m2/s.  The rate constant is 
smol

m
xk


 

2

6
7101 .  Initially, the pipe contains nothing but 

solvent.  At the inlet, the reactants, A and B, are fed in at 1000.0 and 2000.0 mol/m3 
respectively.  No C or D is present in the feed stream.  At the outlet, assume the concentrations 
no longer change (i.e. a no flux boundary condition). 
 
(a)  Solve the problem.  Estimate how long it takes this reactor to get to steady state. 
(b)  Show the steady state profile. 
(c)  What fraction of the reactants are used, i.e. what is the fractional yield? 
(d)  What can be done to the velocity to increase the fractional yield?  How does this impact the 
amount of product made per hour, i.e. the through-put? 
 
Solution: 
 
This is a system of four coupled non-linear parabolic PDEs with one spatial dimension and 
Dirichlet boundary conditions at z=0 and a Neumann boundary conditions at z=10 m.  Moreover, 
this is a system in which convection is dominant.  Therefore, to solve this problem, I will use the 
code parapde_n_anyBC_flow.m. 
 
I modified the input functions in parapde_n_anyBC_flow.m as follows. 
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I assigned the appropriate type of boundary conditions. 
 
BC(1,1) = 'D'; 
BC(2,1) = 'N'; 
BC(1,2) = 'D'; 
BC(2,2) = 'N'; 
BC(1,3) = 'D'; 
BC(2,3) = 'N'; 
BC(1,4) = 'D'; 
BC(2,4) = 'N'; 
 
I set the final time to 300 seconds and chose dt to be 0.1 seconds, so I had 3000 temporal 
intervals. 
 
% discretize time 
to = 0; 
tf = 3.0e+2; 
dt = 1.0e-1; 
 
The rod spans from 0 to 10.0 meter.  I set dx to be 1.0 m, so I had 10 spatial intervals. 
 
% discretize space 
xo = 0; 
xf = 10.0; 
dx = 1.0e-0; 
 
I defined the PDE in the following function.   
  
function dydt_out = pdefunk(x,t,y,dydx,d2ydx2,keq); 
% molar concentrations [mol/m^3] 
CA = y(1); 
CB = y(2); 
CC = y(3); 
CD = y(4); 
% velocity [m/s] 
v = 0.1; 
% diffusivity [m^2/s] 
D = 1.0e-9; 
DA = 1.0*D; 
DB = 1.0*D; 
DC = 1.0*D; 
DD = 1.0*D; 
%  rate constant [m^6/mol^2/s] 
k = 1.0e-7; 
% stoichiometric coefficients 
nuA = -1.0; 
nuB = -2.0; 
nuC = 1.0; 
nuD = 2.0; 
% reaction rate [mol/m^3/s] 
rate = k*CA*CB*CB; 
dydt(1) = -v*dydx(1) + DA*d2ydx2(1) + nuA*rate; 
dydt(2) = -v*dydx(2) + DB*d2ydx2(2) + nuB*rate; 
dydt(3) = -v*dydx(3) + DC*d2ydx2(3) + nuC*rate; 
dydt(4) = -v*dydx(4) + DD*d2ydx2(4) + nuD*rate; 
dydt_out = dydt(keq); 
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I defined the IC and BCs in the functions below. 
 
% 
%  function defining initial condition 
% 
  
function ic_out = icfunk(x,keq); 
ic(1) = 0.0; 
ic(2) = 0.0; 
ic(3) = 0.0; 
ic(4) = 0.0; 
ic_out = ic(keq); 
   
% 
%  functions defining LHS boundary condition 
% 
  
function fout = aBCo(t,k); 
f(1) = 1; 
f(2) = 1; 
f(3) = 1; 
f(4) = 1; 
fout = f(k); 
  
function fout = bBCo(t,k); 
f(1) = 0; 
f(2) = 0; 
f(3) = 0; 
f(4) = 0; 
fout = f(k); 
  
function fout = cBCo(t,k); 
f(1) = -1000; 
f(2) = -2000; 
f(3) = 0; 
f(4) = 0; 
fout = f(k); 
  
% 
%  functions defining RHS boundary condition 
% 
  
function fout = aBCf(t,k); 
f(1) = 0; 
f(2) = 0; 
f(3) = 0; 
f(4) = 0; 
fout = f(k); 
  
function fout = bBCf(t,k); 
f(1) = 1; 
f(2) = 1; 
f(3) = 1; 
f(4) = 1; 
fout = f(k); 
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function fout = cBCf(t,k); 
f(1) = 0; 
f(2) = 0; 
f(3) = 0; 
f(4) = 0; 
fout = f(k); 
 
At the command line prompt, I typed 
 
[xvec,tvec,Tmat] = parapde_n_anyBC_flow; 
 
 This command generated the following final frame of a movie. 
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(a)  Solve the problem.  Estimate how long it takes this reactor to get to steady state. 
 
If a pipe (plug flow reactor) is L = 10 m long and the velocity is 0.1 m/s, then the “residence 

time of the reactor” is given by 
v

L
 , (100 s in this example) which sets a lower bound for 

reaching steady state.  Maybe it takes two residence times to reach steady state.  We can examine 
the concentration of A at the outlet as a function of time. 
 
First, make sure you are plotting the correct variables. 
 
The twelfth spatial index is the end of the pipe. 
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>> xvec(12) 
ans =    10 
 
The solution matrix, Tmat, has three indices, space, time, and equation respectively. 
 
>> whos Tmat 
  Name       Size                  Bytes  Class     Attributes 
 
  Tmat      13x3001x4            1248416  double               
 
This command plots the first concentration at the twelfth spatial node for all times.  
 
>> plot(tvec,Tmat(12,:,1),'k-') 
 

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

 
 
The system has pretty clearly reach steady state by 200 sec. 
 
(b)  Show the steady state profile. 
 
The steady state profile is shown above in the final frame of the movie, since the PDEs were 
solved out to steady state. 
 
(c)  What fraction of the reactants are used, i.e. what is the fractional yield? 
 
The reactant A is input at 1000 mol/m3 and emerges at  
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>> Tmat(12,3001,1) 
ans =  126.9144 
 
So the fractional yield is 
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(d)  What can be done to the velocity to increase the fractional yield?  How does this impact the 
amount of product made per hour, i.e. the through-put? 
 
Slowing down the velocity will increase the residence time and improve the fraction yield. 
 
If we run the code again cutting the velocity in half and increasing the final simulated time to 
400 s, then we have the following final frame of the movie. 
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The concentration of A at the pipe outlet at steady state is  
>> Tmat(12,4001,1) 
ans =   91.4205 
 
So the fractional yield is 
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The through-put is the amount of C produced per unit time.   
 
 

  outCoutCXC CrvCvAQ ,
2

,   

 
For the case with the higher velocity, we have 
 
>> Tmat(12,3001,3) 
ans =  873.0784 
 

      31.871.8731.0 22
,

2
, rrCrvCvAQ outAoutAXA    

 
For the case with the lower velocity, we have 
 
>> Tmat(12,4001,3) 
ans =  903.5768 
 

      18.456.90305.0 22
,

2
, rrCrvCvAQ outAoutAXA    

 
The ratio is 1.93.  So the higher velocity has a lower fractional yield but a higher through-put.  
This intuitively should make sense. 
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Problem (3)  Hyperbolic PDE 
Consider the wave equation 
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Consider a spatially one-dimensional problem where x ranges from 0 to 1.  The hyperbolic 
problem generally requires two initial conditions (one for each order of the time derivative).  
Sample initial conditions are given below. 
 
  xtxU 2sin)0,(   

 0.0)0,( tx
dt

dU
 

 
In the case of a string with each end fixed, the boundary conditions have the form: 
 

0.0),0(  txU  
0.0),1(  txU  

 
(a)  Show the profile of the wave at t = 5.0 for c = 1.5.   
(b)  What is the value of the wave at x = 0.75 and t = 5.0? 
 
Solution 
First, let’s transform this hyperbolic PDE to a system of 2 parabolic PDEs. 
 

Let Uy )1(  and 
t

U
y




)2(  .  We resort to using subscripts in parentheses because subscripts 

will later denote position and superscripts time.  So our two parabolic PDEs are 
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with the initial conditions  
 
  xtxy 2sin)0,()1(     0.0)0,()2( txy  
 
and the boundary conditions: 
  

0.0),0()1(  txy    0.0),()1(  tLxy  
 

0.0),0()2(  txy    0.0),()2(  tLxy  
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This is a single non-linear parabolic PDE with one spatial dimension and a Dirichlet boundary 
condition at z=0 and a Neumann boundary condition at z=0.1.  To solve this problem, I will use 
the code parapde_1_anyBC.m. 
 
I modified the input functions in parapde_1_anyBC.m as follows. 
 
I assigned the appropriate type of boundary conditions. 
 
BC(1) = 'D'; 
BC(2) = 'D'; 
 
I set the final time to 5.0 seconds and chose dt to be 0.001 seconds, so I had 5000 temporal 
intervals. 
 
% discretize time 
to = 0; 
tf = 1.0e+2; 
dt = 1.0e-1; 
 
The string spans from 0 to 1.0 meter.  I set dx to be 0.025 m, so I had 40 spatial intervals. 
 
% discretize space 
xo = 0; 
xf = 1.0; 
dx = 2.5e-2; 
 
I defined the PDE in the following function.   
  
function dydt_out = pdefunk(x,t,y,dydx,d2ydx2,keq); 
c = 1.5; 
dydt(1) = y(2); 
dydt(2) = c^2*d2ydx2(1); 
dydt_out = dydt(keq); 
 
I defined the IC and BCs in the functions below. 
 
% 
%  function defining initial condition 
% 
function ic_out = icfunk(x,keq); 
ic(1) = sin(x*2.0*pi); 
ic(2) = 0.0; 
ic_out = ic(keq); 
   
% 
%  functions defining LHS boundary condition 
%  for hyperbolic BC(2) must be time derivative of BC(1) 
% 
function fout = aBCo(t,k); 
f(1) = 1; 
f(2) = 1; 
fout = f(k); 
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function fout = bBCo(t,k); 
f(1) = 0; 
f(2) = 0; 
fout = f(k); 
  
function fout = cBCo(t,k); 
f(1) = 0; 
f(2) = 0; 
fout = f(k); 
  
% 
%  functions defining RHS boundary condition 
%  for hyperbolic BC(2) must be time derivative of BC(1) 
% 
  
function fout = aBCf(t,k); 
f(1) = 1; 
f(2) = 1; 
fout = f(k); 
  
function fout = bBCf(t,k); 
f(1) = 0; 
f(2) = 0; 
fout = f(k); 
  
function fout = cBCf(t,k); 
f(1) = 0; 
f(2) = 0; 
fout = f(k); 
 
At the command line prompt, I typed 
 
>> [xvec,tvec,Tmat] = hyperpde_n_anyBC; 
 
 This command generated a movie.  The final frame of the movie is shown below. 
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(b)  What is the value of the wave at x = 0.75 and t = 5.0? 
 
I first made sure I understood the dimensions of the solution matrix and the location of 0.75 in 
the x vector. 
 
>> whos Tmat 
  Name       Size                  Bytes  Class     Attributes 
  Tmat      43x5001x2            3440688  double               
 
>> xvec(32) 
ans =    0.7500 
 
The value of the wave at x = 0.75 and t = 5.0 is stored here: 
 
>> Tmat(32,5001,1) 
ans =    0.9989 
 
Therefore the displacement of the wave at x = 0.75 and t = 5.0 s is 0.9989. 
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Problem (4)  Elliptic PDE 
 
Consider the two-dimensional Laplace equation: 
 

 0
y
T

x
T

2

2

2

2









   

 
on the unit square subject to the following boundary conditions, 
 

yyxT 75),0(   
yyxT 5050),1(   

xyxT 50)0,(   

 xxyxT 2sin*502575)1,(   
 
(a)  Show the steady state temperature distribution in the plate.  
(b)  What is the value of the wave at x = 0.5 and y = 0.5? 
 
Solution: 
 
I used Liebmann’s method to solve this problem. 
 
I set the maximum iterations to 1000 and I discretized the unit square with spatial intervals of 
0.05 in both the x and y dimensions.  I set  = 1.5. 
 
I input the following boundary conditions 
 
    %  Fill in Uold with four dirichlet BCs 
    for j = 1:1:ny 
    % BC for x = xo 
        Uold(1,j) = 75.0*ygrid(j); 
    % BC for x = xf 
        Uold(nx,j) = 50.0 + 50.0*ygrid(j); 
    % BC for y = yo 
        Uold(j,1) = 50.0*xgrid(j); 
    % BC for y = yf 
        Uold(j,ny) = 75.0 + 25*xgrid(j) + 50.0*sin(2.0*pi*xgrid(j)); 
    end 
 
At the command prompt, I typed 
 
>> U = ell_liebmann; 
 lamdba = 1.500000 iteration = 198 , error = 0.000001  
 
Therefore the code converged to a relative RMS error of less than 1.0x10-6 in 198 iterations.  The 
plot is shown below. 
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or, changing the variable,   plot_dimensions to 1 yields 
 

x

y

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20

40

60

80

100

120

 
(b)  What is the temperature at x = 0.5 and y = 0.5? 
 
>> U(11,11) 
ans =   56.2500  
 
So the temperature in the center of the plate is 56.25 K. 
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Problem (5) Numerical Integration 
Consider the normal distribution 
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This function does not have an analytical integral. 
 
For the standard normal distribution, where the mean is zero and the standard deviation is one, 
evaluate the integral from x = -2.0 to 1.0, i.e.  0.10.2  xp , using 
 
(a) the trapezoidal method with 1 interval. 
(b) the trapezoidal method with 10 intervals. 
(c) the trapezoidal method with 100 intervals. 
(d) the trapezoidal method with 1000 intervals. 
(e) the Simpson’s Second Order method with 100 intervals. 
(f) the Simpson’s Second Order method with 1000 intervals. 
(g) the Simpson’s Third Order method with 99 intervals. 
(h) the Simpson’s Fourth Order method with 100 intervals. 
(i) Gaussian quadrature of sixth order. 
(j) the cdf command in MatLab. 
(k) Comment on the effect of number of intervals and order of the method. 
 
Solution: 
 
In each code, whether it be trapezoidal.m, simpson2.m, simpson3.m, simpson4.m or 
gaussquad.m, the integrand is input as  
 
function f = funkeval(x) 
f = 1/sqrt(2.0*pi)*exp(-0.5*x^2); 
 
(a) the trapezoidal method with 1 interval. 
 
>>   integral = trapezoidal(-2.0,1.0,1) 
integral =   0.443942536548497 
 
(b) the trapezoidal method with 10 intervals. 
 
>> integral = trapezoidal(-2.0,1.0,10) 
integral =   0.815965728062905 
 
(c) the trapezoidal method with 100 intervals. 
 
>> integral = trapezoidal(-2.0,1.0,100) 
integral =   0.818568367248082 
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(d) the trapezoidal method with 1000 intervals. 
 
>> integral = trapezoidal(-2.0,1.0,1000) 
integral =   0.818594351655828 
 
(e) the Simpson’s Second Order method with 100 intervals. 
 
>> integral = simpson2(-2.0,1.0,100) 
integral =   0.818594615812413 
 
(f) the Simpson’s Second Order method with 1000 intervals. 
 
>> integral = simpson2(-2.0,1.0,1000) 
integral =   0.818594614120533 
 
(g) the Simpson’s Third Order method with 99 intervals. 
 
>> integral = simpson3(-2.0,1.0,99) 
integral =   0.818594618084208 
 
(h) the Simpson’s Fourth Order method with 100 intervals. 
 
>> integral = simpson4(-2.0,1.0,100) 
integral =   0.818594614119623 
 
(i) Gaussian quadrature of sixth order. 
 
>> integral = gaussquad(-2.0,1.0,6) 
integral =   0.818594704229380 
 
(j) the cdf command in MatLab. 
 
>> plow = cdf('normal',-2.0,0,1) 
plow =   0.022750131948179 
 
>> phigh = cdf('normal',1.0,0,1) 
phigh =   0.841344746068543 
 
>> p = phigh - plow 
p =   0.818594614120364 
 
(k) Comment on the effect of number of intervals and order of the method. 
 
As the number of intervals increases, the accuracy of the method increases.  As the order of the 
method increases, the number of intervals needed to generate a given level of accuracy 
drastically decreases. 
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Problem (6) Integral Equations 
 
 Classify and numerically solve the following integral equation. 
 

  





x yx

dyye
x

x
5

210

)(2

))(sin(
2

5

100
)(   

 
 Solve for x = 5 to 10. 
 Classify as linear/nonlinear, Volterra/Fredholm, first/second kind. 
 Provide a plot of the solution. 
 Demonstrate (1)  the effect of changing the increment size (use say 5 and 20 intervals). 
 Demonstrate (2)  the convergence of the method by looking at the solution at each 
iteration. 
 
Solution: 
 
This equation is a nonlinear Volterra equation of the second kind. 
It is nonlinear in phi.  It is Volterra because phi appears both inside and outside the integral. 
It is of the second kind because the limits of integration are variable. 
 
 Color code for following two plots: 
 red solid   - solution after 1 iteration 
 blue solid   - solution after 2 iterations 
 green solid   - solution after 3 iterations 
 magenta solid  - solution after 4 iterations 
 black dotted   - solution after 5 iterations 
 red dotted   - solution after 6 iterations 
 blue dotted   - solution after 7 iterations 
 green dotted   - solution after 8 iterations 
 
Plot of solution using 5 intervals. 
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Plot of solution using 20 intervals. 
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We can see that the code is converging with each iteration.  We can also see that we obtain a 
smoother solution with more intervals. 
 


