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Homework Assignment Number Four Solutions 
 
Problem (1) 
Consider the following boundary value problem 
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with the boundary conditions  
 
 0.1)0(  oyxy  

 0.1)10(  fyxy  

 
(a)  Convert this single second-order ODE, to a system of two first-order ODEs. 
(b)  Let  ,0,2,2,1 c   Determine the behavior of )(xy  and )(xy  from 100  x .  Show the 
behavior in a plot.  Clearly identify which curve corresponds to which function.  State what 
value of the initial condition for )0(  xy  led to the final solution. 

(c)  Let  2,2,1,0 c   Determine the behavior of )(xy  and )(xy  from 100  x .  Show the 
behavior in a plot.  Clearly identify which curve corresponds to which function.  State what 
value of the initial condition for )0(  xy  led to the final solution. 
 
Solution: 
(a)  Convert this single second-order ODE, to a system of two first-order ODEs. 
 
Follow the three step process.  First, define new variables. 
 

 yy 1    
dx

dy
y 2  

 
Second write the ODEs in the new variables. 
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Third, write the conditions in terms of the new variables. 
 
 0.1)0(1  oyxy  

 0.1)10(1  fyxy  

 



D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 

2 

(b)  Let  ,0.0,0.2,0.2,0.1 c   Determine the behavior of )(xy  and )(xy  from 100  x .  
Show the behavior in a plot.  Clearly identify which curve corresponds to which function.  State 
what value of the initial condition for )0(  xy  led to the final solution. 
 
To solve this BVP, I will use both the code for Newton-Raphson method with Numerical 
Derivatives for 1 equation (nrnd1.m) and the classical 4th-order Runge-Kutta method for N 
equations (rk4n.m). 
 
I modified the input function in nrnd1.m as follows: 
 
function f = funkeval(x) 
xo = 0; 
yo_1 = 1; 
yo_2 = x; 
xf = 10.0; 
yf = 1.0; 
n = 1000; 
[x,y]=rk4n(n,xo,xf,[yo_1,yo_2]); 
yf_calc = y(n+1,1); 
f = yf_calc-yf; 
 
I entered the ODEs in the input file for rk4n.m as follows 
 
function dydx = funkeval(x,y); 
dydx(1) = y(2); 
dydx(2) = y(1) - 2.0*y(2) + 2.0*sin(x); 
 
At the command line prompt, I typed 
 
>> [x0,err] = nrnd1(0.5) 
 
where 0.5 was my initial guess for the initial slope.  This command generated the following 
output. 
 
icount = 1 xold = 5.000000e-01 f = -1.095578e+00 df = -2.160443e-02 xnew = -5.021082e+01  err = 1.000000e+02  
icount = 2 xold = -5.021082e+01 f = -6.264989e-13 df = -2.160443e-02 xnew = -5.021082e+01  err = 5.775100e-13  
 
x0 =  -50.2108 
 
err =   5.7751e-13 

 
The initial slope is -50.2108. 
 
Not surprisingly this converged in one iteration (with a second iteration required for 
confirmation) because the ODEs are linear in the unknown, y. 
 
The converged solution can be viewed by typing the following command,  
 
>> [x,y]=rk4n(1000,0,10,[1,-50.2108]); 
 
The resulting figure is provided below. 
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We can confirm that this is the solution to the boundary condition by checking the value of y at 
the final value of x. 
 
>> y(1001,1) 
 
ans =    1.0000 

 
 
(c)  Let  2,2,1,0 c   Determine the behavior of )(xy  and )(xy  from 100  x .  Show the 
behavior in a plot.  Clearly identify which curve corresponds to which function.  State what 
value of the initial condition for )0(  xy  led to the final solution. 
 
To solve this BVP, I will again use both the code for Newton-Raphson method with Numerical 
Derivatives for 1 equation (nrnd1.m) and the classical 4th-order Runge-Kutta method for N 
equations (rk4n.m). 
 
I used the same input function in nrnd1.m as was used in part(b) above. 
 
I entered the ODEs in the input file for rk4n.m as follows 
 
function dydx = funkeval(x,y); 
dydx(1) = y(2); 
dydx(2) = y(1) - 2.0*exp(y(2)) + 2.0*sin(x); 
 
At the command line prompt, I typed 
 
>> [x0,err] = nrnd1(0.5) 
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where 0.5 was my initial guess for the initial slope.  This command generated the following 
output. 
 
>> [x0,err] = nrnd1(0.5) 
icount = 1 xold = 5.000000e-01 f = -1.018489e+02 df = 2.346654e+02 xnew = 9.340174e-01  err = 1.000000e+02  
icount = 2 xold = 9.340174e-01 f = -2.609997e+01 df = 1.171209e+02 xnew = 1.156864e+00  err = 1.926297e-01  
icount = 3 xold = 1.156864e+00 f = -7.326415e+00 df = 5.035093e+01 xnew = 1.302371e+00  err = 1.117247e-01  
icount = 4 xold = 1.302371e+00 f = -2.382988e+00 df = 2.191844e+01 xnew = 1.411092e+00  err = 7.704722e-02  
icount = 5 xold = 1.411092e+00 f = -5.168776e-01 df = 1.353624e+01 xnew = 1.449276e+00  err = 2.634745e-02  
icount = 6 xold = 1.449276e+00 f = -3.448829e-02 df = 1.180901e+01 xnew = 1.452197e+00  err = 2.011095e-03  
icount = 7 xold = 1.452197e+00 f = -1.814707e-04 df = 1.169306e+01 xnew = 1.452212e+00  err = 1.068682e-05  
icount = 8 xold = 1.452212e+00 f = -6.589710e-08 df = 1.169245e+01 xnew = 1.452212e+00  err = 3.880885e-09  
 
x0 =    1.4522 
 
err =   3.8809e-09 
 
The initial slope is 1.4522. 
 
This problem took more iterations to converge because it is nonlinear and our initial guess 
wasn’t particularly good. 
 
The converged solution can be viewed by typing the following command,  
 
>> [x,y]=rk4n(1000,0,10,[1,1.4522]); 
 
The resulting figure is provided below. 
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We can confirm that this is the solution to the boundary condition by checking the value of y at 
the final value of x. 
 
>> y(1001,1) 
ans =    0.9999 
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Problem (2) 
Find an application from your own experience or a classical problem in your own field of 
research that results in a ODE boundary value problem.   
 (a)  Describe the physical problem from which the equation arises.  Describe it in sufficient 
detail that an engineer from a different discipline could understand it. 

(b)  Write the ODE(s).  Write a complete set of reasonable boundary conditions. 
(c)  If known, provide the analytical solution. 
(d)  Numerically solve and plot the solution. 
(e)  Explain the physical significance of the solution(s) and its behavior. 

 
Problem (3) 
 Consider the following one-dimensional linear parabolic P.D.E., commonly known as the 
heat equation: 
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where ,  , the thermal diffusivity is defined as  
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(a)  Consider an aluminum cylindrical rod 1.0 meter long connecting two heat reservoirs.  One of 
the reservoirs is maintained at T=300K, the other reservoir at T=400 K.  Initially, the cylinder is 
at 300 K.  There is no heat loss from the rod.  Consider the system to be one-dimensional. 
 (i)  Write the IC and BC’s. 
 (ii)  What does the initial profile look like? 
 (iii)  What does the steady state profile look like?  Explain. 
 (iv)  What is the temperature 0.5 meters into the rod at steady state? 
 (v)  What is the temperature 0.5 meters into the rod after 1000 seconds? 
 (vi)  Approximately how long does it take for the midpoint of the rod to get within 1% of the 
steady state value?  
 
Solution: 
 
 (i)  Write the PDE, IC, and BC’s. 
 

PDE:  














2

2

t x

TT   

 
Initial Condition  300)0,( txT  
Boundary Condition  300),0(  txT   
Boundary Condition  400),(  tLxT  
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 (ii)  What does the initial profile look like? 
  
 300)0,( txT   A horizontal line at T= 300 K on a T vs x plot. 
 
 (iii)  What does the steady state profile look like?   
  
 A linear profile from one boundary condition to the other. 
 
  300400300),(  xtxT  
  
 ( vi)  What is the temperature 0.5 meters into the rod at steady state? 
 
   KtxT 3503004005.0300),5.0(   
 
 (v)  What is the temperature 0.5 meters into the rod after 1000 seconds? 
 
To solve this single, one-dimensional linear parabolic PDE, I will use the code 
linparapde_crank_anyBC.m. 
 
I modified the input functions in linparapde_crank_anyBC.m as follows. 
 
I set both boundary conditions to Dirichlet. 
 
BC(1) = 'D'; 
BC(2) = 'D'; 
 
I set the final time to 4000 seconds and chose dt to be 40 seconds, so I had 100 temporal 
intervals. 
 
% discretize time 
to = 0; 
tf = 4.0e+3; 
dt = 4.0e+1; 
 
The rod spans from 0 to 1 meter.  I set dx to be 0.1 m, so I had 10 spatial intervals. 
 
% discretize space 
xo = 0; 
xf = 1.0; 
dx = 1.0e-1; 
 
I defined the PDE in the following functions.  Only c and d are non-zero.  I obtained the physical 
properties of Al from the internet. 
 
% 
%  functions defining PDE 
% 
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function a = afunk(x,t); 
a = 0; 
  
function b = bfunk(x,t); 
b = 0; 
  
function c = cfunk(x,t); 
% rho = density [kg/m^3] 
rho = 2700.0; 
% Cp = heat capacity [J/kg/K] 
Cp_molar = 24.2; % J/mol/K 
MW_gpm = 26.9815385; % g/mol 
MW_kgpm = MW_gpm/1000.0; % kg/mol 
Cp = 24.2/MW_kgpm; 
% k = thermal conductivity [W/m/K] 
k = 237.0; 
%  alpha = thermal diffusivity 
alpha = k/rho/Cp; 
c = alpha; 
  
function dcdx = dcdxfunk(x,t); 
dcdx = 0; 
  
function d = dfunk(x,t); 
d = 1; 
  
function f = ffunk(x,t); 
f = 0; 
  
 
I defined the IC and BCs in the functions below. 
 
% 
%  function defining initial condition 
% 
  
function ic = icfunk(x); 
ic = 300; 
  
% 
%  functions defining LHS boundary condition 
% 
  
function f = aBCo(t); 
f = 1; 
  
function f = bBCo(t); 
f = 0; 
  
function f = cBCo(t); 
f = -300; 
  
% 
%  functions defining RHS boundary condition 
% 
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function f = aBCf(t); 
f = 1; 
  
function f = bBCf(t); 
f = 0; 
  
function f = cBCf(t); 
f = -400; 
 
At the command line prompt, I typed 
 
>> [xvec,tvec,Tmat] = linparapde_crank_anyBC; 
 
 This command generated the following plot. 
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To find the value at t = 1000 and x = 0.5, I first located the indices corresponding to those 
values. 
 
>> tvec(26) 
ans =        1000 
 
>> xvec(7) 
ans =    0.5000 
 
>> Tmat(7,26) 
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ans =  325.3130 
 
Therefore the temperature at the midpoint at 1000 seconds is 325.3 K. 
 
 (vi)  Approximately how long does it take for the midpoint of the rod to get within 1% of the 
steady state value?  
 1% of steady state value is 346.5 K 
 
I searched through the Tmat at the midpoint until I located the two time indices at the midpoint 
where T was below and above this threshold.   
 
>> Tmat(7,76:77) 
ans =  346.3660  346.5026 
 
I then printed out the times corresponding to those indices. 
 
>> tvec(76:77) 
ans =        3000        3040 
 
The times corresponding to those points is 3000 and 3040 seconds. 
 
So, it takes between 3000 and 3040 seconds to reach this temperature. 
 
Problem (4) 
Completely rework Problem (3) with the following initial and boundary conditions. 
Consider an aluminum cylindrical rod 1.0 meter long with one end connected to a heat reservoir 
at T=400 K.  The other end is insulated.   The entire rod is also insulated so that there is no heat 
loss to the surroundings.  The initial temperature of the rod is 300 K. 
 
Solution: 
 
This problem could be done with the program, syspde1.m. 
 
 (i)  Write the PDE, IC, and BC’s. 
 


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
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300)0,( txT  
400),0(  txT          

0),(  tLx
dx

dT
 

. 
 (ii)  What does the initial profile look like? 
 
 300)0,( txT   A horizontal line at T= 300 K on a T vs x plot. 
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 (iii)  What does the steady state profile look like?  Explain. 
 
 KtxT 400),(   
 
 The steady state profile is constant at 400 K.  The reason for this is that one of the boundaries 
continues to pump in heat until the temperature reaches 400 K.  Once it reaches that, it stops 
pumping in heat since heat won’t flow up hill.   
 
 (iv)  What is the temperature 0.5 meters into the rod at steady state? 
 
 KtxT 400),5.0(   
 
 (v)  What is the temperature 0.5 meters into the rod after 1000 seconds? 
 
To solve this single, one-dimensional linear parabolic PDE, I will use the code 
linparapde_crank_anyBC.m. 
 
Starting with the code from Problem 3 above, I modified the input functions in 
linparapde_crank_anyBC.m as follows. 
 
I set both boundary conditions to Dirichlet. 
 
BC(1) = 'D'; 
BC(2) = 'N'; 
 
I didn’t change the temporal discretization, the spatial discretization, the PDE, the IC.  I changed 
the BCs as follows. 
% 
%  functions defining LHS boundary condition 
% 
  
function f = aBCo(t); 
f = 1; 
  
function f = bBCo(t); 
f = 0; 
  
function f = cBCo(t); 
f = -400; 
  
% 
%  functions defining RHS boundary condition 
% 
  
function f = aBCf(t); 
f = 0; 
  
function f = bBCf(t); 
f = 1; 
  



D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 

11 

function f = cBCf(t); 
f = 0; 
 
At the command line prompt, I typed 
 
>> [xvec,tvec,Tmat] = linparapde_crank_anyBC; 
 
 This command generated the following plot. 
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To find the value at t = 1000 and x = 0.5, I first located the indices corresponding to those 
values. 
 
>> tvec(26) 
ans =        1000 
 
>> xvec(7) 
ans =    0.5000 
 
>> Tmat(7,26) 
ans =  325.4738 
 
Therefore the temperature at the midpoint at 1000 seconds is 325.5 K. 
 
(vi)  Approximately how long does it take for the midpoint of the rod to get within 1% of the 
steady state value?  
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 1% of steady state value of 400 K is 396 K. 
 
Clearly from the plot in part (v), we aren’t close to that value at 4000.  I reran the code running 
for a longer time with the same size time intervals.  I modified the code to print out only every 
10 profiles in the plot. 
 
tf = 4.0e+4; 
dt = 4.0e+1; 
 
nskip = 10; 
 
At the command line prompt, I typed 
 
>> [xvec,tvec,Tmat] = linparapde_crank_anyBC; 
 
 This command generated the following plot. 
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I searched through the Tmat at the midpoint until I located the two time indices at the midpoint 
where T was below and above this threshold.   
 
>> Tmat(7,324:325) 
ans =  395.9874  396.0259 
 
I then printed out the times corresponding to those indices. 
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>> tvec(324:325) 
ans =       12920       12960 
 
The times corresponding to those points are 12,920 and 12, 960 seconds. 
 
So, it takes between 12,920 and 12, 960 seconds to reach this temperature. 
 
Problem (5) 
Rework Problem (3) with the same initial conditions as given in Problem (3).  However, in this 
case, the rod is not insulated so heat is lost from the rod, which has a radius of 10 cm.  The 
surrounding temperature is 200 K.  Use a heat transfer coefficient of 40.0 W/m2/K.  Consider the 
system to be one-dimensional. 
 
Solution: 
 
 (i)  Write the IC and BC’s. 
 

 
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300)0,( txT  
300),0(  txT         
400),(  tLxT  

 
where for the case of a one-dimensional cylindrical rod, the area is the surface area of the rod, 

DLA  .  This diameter appears no where else in the P.D.E. but is needed for this type of 

generation term.  The volume then is 
4

2LD
V


  

 
 (ii)  What does the initial profile look like? 
 
 300)0,( txT   A horizontal line at T= 300 K on a T vs x plot. 
 
 (iii)  What does the steady state profile look like?  Explain. 
 
See the plot in part (iv) below. 
 
 (iv)  What is the temperature 0.5 meters into the rod at steady state? 
 
Starting with the code from Problem 3 (not Problem 4) above, I modified the input functions in 
linparapde_crank_anyBC.m as follows. 
 
I changed the PDE.  I didn’t change the type of BCs, the temporal discretization, the spatial 
discretization, the IC or the BCs.  I changed functions a and f. 
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function a = afunk(x,t); 
% rho = density [kg/m^3] 
rho = 2700.0; 
% Cp = heat capacity [J/kg/K] 
Cp_molar = 24.2; % J/mol/K 
MW_gpm = 26.9815385; % g/mol 
MW_kgpm = MW_gpm/1000.0; % kg/mol 
Cp = 24.2/MW_kgpm; 
% length of rod [m] 
L = 1.0; 
%  heat transfer coefficient in [W/m^2/K] 
h_tran_coeff = 40; 
% diameter in [m] 
radius = 0.1; 
diameter = 2.0*radius; 
% Area in [m^2] 
Area = pi*diameter*L; 
% Volume in [m^3] 
Volume = pi/4*diameter^2*L; 
a = h_tran_coeff*Area/(rho*Cp*Volume); 
 
function f = ffunk(x,t); 
% rho = density [kg/m^3] 
rho = 2700.0; 
% Cp = heat capacity [J/kg/K] 
Cp_molar = 24.2; % J/mol/K 
MW_gpm = 26.9815385; % g/mol 
MW_kgpm = MW_gpm/1000.0; % kg/mol 
Cp = 24.2/MW_kgpm; 
% length of rod [m] 
L = 1.0; 
%  heat transfer coefficient in [W/m^2/K] 
h_tran_coeff = 40; 
% diameter in [m] 
radius = 0.1; 
diameter = 2.0*radius; 
% Area in [m^2] 
Area = pi*diameter*L; 
% Volume in [m^3] 
Volume = pi/4*diameter^2*L; 
a = h_tran_coeff*Area/(rho*Cp*Volume); 
%  Temperature of the surroundings [K] 
Tsurround = 200.0; 
f = a*Tsurround; 
 
 
At the command line prompt, I typed 
 
>> [xvec,tvec,Tmat] = linparapde_crank_anyBC; 
 
 This command generated the following plot. 
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To find the value in the midpoint at steady state, I assumed my last step was at steady state.  
Since I have 100 intervals, I have 101 temporal nodes. 
 
>> Tmat(7,101) 
ans =  303.2782 
 
To confirm that 4000 s was close to steady state, I ran the simulation to 40,000 s as well.  
Keeping the same time step, I now have 1000 intervals, so I have 1001 temporal nodes. 
 
>> Tmat(7,1001) 
ans =  303.3694 
 
Close enough for me.  The steady state temperature in the rod at the midpoint is 303.4 K. 
 
 (v)  What is the temperature 0.5 meters into the rod after 1000 seconds? 
 
To find the value at t = 1000 and x = 0.5, I first located the indices corresponding to those 
values. 
 
>> tvec(26) 
ans =        1000 
 
>> xvec(7) 
ans =    0.5000 
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>> Tmat(7,26) 
ans =  299.0156 
 
Therefore the temperature at the midpoint at 1000 seconds is 299.0 K. 
 
 (vi)  Approximately how long does it take for the midpoint of the rod to get within 1% of the 
steady state value?  
 
The steady state temperature in the rod at the midpoint is 303.4 K from part (iv). 
 Within 1% of steady state value is between 300.37 K and 306.43.   
 
I decided to generate a plot of the time behavior of the temperature at the center of the node. 
 
>> figure(2) 
>> plot(tvec,Tmat(7,:)); 
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The temperature first decreases due to the cold surroundings.  Then it increases due to the hot 
boundary condition.   
 
I searched through the Tmat at the midpoint until I located the two time indices at the midpoint 
where T was below and above this threshold.   
 
>> Tmat(7,33:34) 
ans = 
  300.3317  300.4842 
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I then printed out the times corresponding to those indices. 
 
>> tvec(33:34) 
ans =       1280       1320 
 
The times corresponding to those points are 1280 and 1320 seconds. 
 
So, it takes between 1280 and 1320  seconds to reach this temperature. 
 


