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Homework Assignment Number Two Solutions 
 
Problem 1. 
Consider the Peng-Robinson Equation of state as given below.   The critical temperature and pressure of oxygen are 
also given below.  Each root of this equation is a molar volume. Find all of the roots of the Peng-Robinson equation 
for oxygen at the temperatures given below and for a pressure of 1.0 atmosphere.   
 (a) T = 98.0 K 
 (b) T = 298.0 K 
(For those of you who have not had thermodynamics, there can only be one phase above the critical temperature.)  
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TT κa where, for the oxygen molecule 4069.0=κ , 6.154=cT  K, and 

610046.5 ⋅=cP  Pa. 
 
Solution: 
 
Using the Newton-Raphson method with numerical derivatives as implemented in the code, nrnd1.m, we input the 
function,  
 
function f = funkeval(x) 
V = x; 
T = 98; % K 
p = 101325; % Pa 
R = 8.314; % J/mol/K 
Tc = 154.6; % K 
pc = 5.046e+6; % Pa 
kappa = 0.4069; 
alpha = (1 + kappa*(1 - sqrt(T/Tc)))^2; 
b = 0.07780*R*Tc/pc; 
a = 0.45724*R^2*Tc^2/pc*alpha; 
f = R*T/(V-b) - a/(V*(V+b) + b*(V-b)) - p; 
 
(a) T = 98.0 K 
 
This temperature is below the critical temperature.  We should find three roots. 
 
The ideal gas should give a good estimate of the vapor root 
 
T = 98; % K 
p = 101325; % Pa 
R = 8.314; % J/mol/K 
V = R*T/p 
 
V =   0.008041174438687 
 
We now run the Newton Raphson with Numerical Derivatives code for 1 unknown (nrnd1) with that initial guess. 
 
>>  [x0,err] = nrnd1(0.008) 
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icount = 1 xold = 8.000000e-03 f = -1.955300e+03 df = -1.211452e+07 xnew = 7.838599e-03  err = 1.000000e+02  
icount = 2 xold = 7.838599e-03 f = 3.903320e+01 df = -1.260542e+07 xnew = 7.841695e-03  err = 3.948818e-04  
icount = 3 xold = 7.841695e-03 f = 1.871688e-02 df = -1.259572e+07 xnew = 7.841697e-03  err = 1.894962e-07  
 
x0 =   0.007841696626165 
 
err =     1.894961977606645e-07 

 
Therefore, the vapor root is 0.00784 moles/m3. 
 
Next, we find the liquid root, which is a little larger, say 10% larger, than the b parameter.  First we calculate b. 
 
>> R = 8.314; % J/mol/K 
Tc = 154.6; % K 
pc = 5.046e+6; % Pa 
b = 0.07780*R*Tc/pc 
 
b =    1.981763660721363e-05 
 

Then we run nrnd1 with a guess 10% larger than b. 
 
>>  [x0,err] = nrnd1(1.1*1.98e-05) 
 
icount = 1 xold = 2.178000e-05 f = 2.292908e+08 df = -1.978558e+14 xnew = 2.293888e-05  err = 1.000000e+02  
icount = 2 xold = 2.293888e-05 f = 9.255337e+07 df = -7.027407e+13 xnew = 2.425591e-05  err = 5.429746e-02  
icount = 3 xold = 2.425591e-05 f = 3.173420e+07 df = -2.992303e+13 xnew = 2.531644e-05  err = 4.189086e-02  
icount = 4 xold = 2.531644e-05 f = 7.798334e+06 df = -1.688450e+13 xnew = 2.577830e-05  err = 1.791675e-02  
icount = 5 xold = 2.577830e-05 f = 8.614611e+05 df = -1.340424e+13 xnew = 2.584257e-05  err = 2.486897e-03  
icount = 6 xold = 2.584257e-05 f = 1.599850e+04 df = -1.298885e+13 xnew = 2.584380e-05  err = 4.765980e-05  
icount = 7 xold = 2.584380e-05 f = 5.309695e+01 df = -1.298103e+13 xnew = 2.584381e-05  err = 1.582719e-07  
 
x0 =    2.584380714366121e-05 
 
err =    1.582718742543172e-07 
 

Therefore, the liquid root is 2.58x10-5 moles/m3. 
 

Next we find the intermediate root.  This root must be between the liquid and vapor root.  We can try 10*b. 
 
>>  [x0,err] = nrnd1(10*1.98e-05) 
 
icount = 1 xold = 1.980000e-04 f = 7.086039e+05 df = 9.471210e+09 xnew = 1.231834e-04  err = 1.000000e+02  
icount = 2 xold = 1.231834e-04 f = -1.147320e+06 df = 5.361335e+10 xnew = 1.445833e-04  err = 1.480109e-01  
icount = 3 xold = 1.445833e-04 f = -2.611509e+05 df = 3.149117e+10 xnew = 1.528761e-04  err = 5.424543e-02  
icount = 4 xold = 1.528761e-04 f = -2.408423e+04 df = 2.590168e+10 xnew = 1.538059e-04  err = 6.045494e-03  
icount = 5 xold = 1.538059e-04 f = -2.641220e+02 df = 2.534796e+10 xnew = 1.538164e-04  err = 6.774216e-05  
icount = 6 xold = 1.538164e-04 f = -9.473805e-02 df = 2.534183e+10 xnew = 1.538164e-04  err = 2.430434e-08  
 
x0 =   1.538163686174564e-04 
 
err =     2.430434345736832e-08 

 
Therefore, the intermediate root is 1.54x10-4 moles/m3. 
 

(b) T = 298.0 K 
 
This temperature is above the critical temperature.  We should find one root. 
 
First, I change the input function in nrnd1.m.  The only change is a change in temperature. 
 
function f = funkeval(x) 
V = x; 
T = 298; % K 
p = 101325; % Pa 
R = 8.314; % J/mol/K 
Tc = 154.6; % K 
pc = 5.046e+6; % Pa 
kappa = 0.4069; 
alpha = (1 + kappa*(1 - sqrt(T/Tc)))^2; 
b = 0.07780*R*Tc/pc; 
a = 0.45724*R^2*Tc^2/pc*alpha; 
f = R*T/(V-b) - a/(V*(V+b) + b*(V-b)) - p; 
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The ideal gas should give a good estimate of the root. 
 
>> T = 298; % K 
p = 101325; % Pa 
R = 8.314; % J/mol/K 
V = R*T/p 
 
V =   0.024451734517641 
 
>> [x0,err] = nrnd1(0.024) 
icount = 1 xold = 2.400000e-02 f = 1.808531e+03 df = -4.293565e+06 xnew = 2.442122e-02  err = 1.000000e+02  
icount = 2 xold = 2.442122e-02 f = 3.134197e+01 df = -4.146867e+06 xnew = 2.442878e-02  err = 3.093887e-04  
icount = 3 xold = 2.442878e-02 f = 1.281518e-02 df = -4.144303e+06 xnew = 2.442878e-02  err = 1.265819e-07  
 
x0 =   0.024428780172505 
 
err =     1.265818784914305e-07 
 

Therefore, the root is 0.0244 moles/m3. 
 

Problem 2. 
Consider the van der Waals equation of state.   
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Vapor-liquid equilibrium (VLE) at a given temperature, T, occurs at a specific pressure, the vapor pressure, pvap.  
Therefore, we can consider the vapor pressure our unknown.  However, you can’t calculate the vapor pressure 
without knowing the molar volumes of the vapor, Vvap, and liquid, Vliq, phases.  Therefore, in a standard VLE 
problem, we have three unknowns:  pvap, Vvap and Vliq.  These three variables require three equations.  The first 
equation is the relationship between pvap, Vvap or Vliq., given by the equation of state,  
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The second equation is the thermodynamic constraint establishing mechanical equilibrium, 
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The third equation is the thermodynamic constraint establishing chemical equilibrium, 

 
( ) 0,,3 =−= liqvapliqvapvap VVpf µµ  

 
where the chemical potential for a van der Waals gas is given by 
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This expression for the chemical potential of a van der Waals gas introduces a new constant, the thermal de Broglie 
wavelength, Λ, but we don’t need it because it drops out when we equate chemical potentials. 
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If we so choose, we could solve the VLE problem by finding the roots to these three equations.  This requires good 
guesses for all three unknown variables. 
 
Here is a better alternative solution approach.  Solving a system of three equations and three unknowns is much 
harder than solving a system of equations with one equation and one unknown.  Therefore, a useful trick in this 
problem is to recognize that the van der Waal’s equation of state is a cubic equation of state and the roots of a cubic 
equation of state are easily obtained using the Matlab “roots” function.   
 

( ) 023 =−++− abaVVRTpbpV  
 
Therefore, we can pose the solution of the VLE problem of the van der Waals fluid as a single equation with a single 
equation, in which we guess the vapor pressure, use the roots command to solve for the Vvap and Vliq. and substitute 
them into the equation stating that the chemical potentials are equal.  
 
So, in order to solve this problem as a single nonlinear algebraic equation with a single variable, pvap, we have an 
equation,  
 
( ) 0=−= vapliqvappf µµ  

 
where we solve for the molar volumes each iteration and then substitute their values into the function above. 
 
Find the vapor pressure of Argon at T=77 K.  The van der Waals constants for argon are a=0.1381 m6/mol2 and 
b=3.184x10-5 m3/mol.  The gas constant is R=8.314 J/mol/K.  Also report the liquid and vapor molar volumes. 
 
Solution: 
 
First we modify the input function in nrnd1.m 
 
function f = funkeval(x) 
p = x; 
T = 77; % K 
R = 8.314; % J/mol/K 
a = 0.1381; 
b = 3.184e-5; 
Vvec = roots([p,-(p*b+R*T),a,-a*b]); 
Vvap = max(Vvec); 
Vliq = min(Vvec); 
muliq = -R*T*(log(Vliq-b) - b/(Vliq-b) + 2*a/(Vliq*R*T)); 
muvap = -R*T*(log(Vvap-b) - b/(Vvap-b) + 2*a/(Vvap*R*T)); 
f = muliq - muvap; 
 
Next we guess that the vapor pressure is 10 atm (1013250 Pa). 
 
>> [x0,err] = nrnd1(1013250) 
icount = 1 xold = 1.013250e+06 f = 1.031053e+03 df = 2.737563e-04 xnew = -2.158245e+06  err = 1.000000e+02  
... 
icount = 100 xold = 1.808793e+07 f = 3.215774e+03 df = -6.053046e-05 xnew = 1.808841e+07  err = 1.650221e+00  
icount = 101 xold = 1.808841e+07 f = 3.215771e+03 df = -6.052910e-05 xnew = 1.808742e+07  err = 1.650262e+00  
Sorry.  You did not converge in 100 iterations. 
The final value of x was 1.808742e+07  
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x0 =      1.808741850893457e+07 - 2.641805411122832e+07i 
 
err =   1.650261686195342 

 
Well, 10 atm was a bad guess and did not converge.  Let’s try a new guess of 1 atm (101325 Pa). 
 
>> [x0,err] = nrnd1(101325) 
icount = 1 xold = 1.013250e+05 f = -1.836244e+02 df = 6.089856e-03 xnew = 1.314775e+05  err = 1.000000e+02  
icount = 2 xold = 1.314775e+05 f = -2.376403e+01 df = 4.639125e-03 xnew = 1.366000e+05  err = 3.750018e-02  
icount = 3 xold = 1.366000e+05 f = -4.744139e-01 df = 4.456224e-03 xnew = 1.367065e+05  err = 7.787557e-04  
icount = 4 xold = 1.367065e+05 f = -1.946510e-04 df = 4.452568e-03 xnew = 1.367065e+05  err = 3.197840e-07  
 
x0 =     1.367065379805641e+05 
 
err = 3.197840381851619e-07 
 

Well, 1 atm was a good guess and converged.  The vapor pressure of vdW Argon at 77 K is 1.367x105 Pa. 
 
The corresponding liquid and vapor molar volumes are  
 
>> p = x0 
 
p =     1.367065379805641e+05 
 
>> T = 77; % K 
R = 8.314; % J/mol/K 
a = 0.1381; 
b = 3.184e-5; 
Vvec = roots([p,-(p*b+R*T),a,-a*b]); 
Vvap = max(Vvec) 
Vliq = min(Vvec) 
 
Vvap =   0.004491379329435 
 
Vliq =     3.881286647807421e-05 
 

Therefore, the vapor root is 0.00449 moles/m3 and the liquid root is 3.88x10-5 moles/m3. 
 

 
 
 
Problem 3. 
Find the solution to the following system of nonlinear algebraic equations near (1,1,1).  

432 3211 −++= xxxf  
3

2
3

12 4xxf −=  

333 sin xxf −=  
 
Solution: 
 
Since this is a system of three nonlinear algebraic equations with three unknowns, we can use the multivariate 
Newton-Raphson with numerical approximations to the derivatives.  We will set a tolerance of 10-6. 
The input function looks like: 
 
function f = funkeval(x) 
% 
%  these two lines force a column vector of length n 
% 
n = max(size(x)); 
f = zeros(n,1); 
% 
%  enter the functions here 
% 
f(1) = x(1) + 2*x(2) + 3*x(3) - 4; 
f(2) = x(1)^3 - 4*x(2)^3; 
f(3) = x(3) - sin(x(3)); 
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The command line prompt and output yields 
 
>> [x,err,f] = nrndn([1,1,1],1.0e-6,1) 
iter =    1, err =  3.28e-01 f =  2.08e+00  
 iter =    2, err =  3.97e-01 f =  5.13e-01  
 iter =    3, err =  1.50e-01 f =  6.63e-01  
... 
 iter =   31, err =  1.81e-06 f =  2.95e-10  
 iter =   32, err =  1.21e-06 f =  1.97e-10  
 iter =   33, err =  8.03e-07 f =  1.31e-10  
  
x =   1.769971344010968   1.115012077004957   0.000001500659706 
 
err =     8.031984760117370e-07 
 
f =     1.310558041829265e-10 

 
Therefore, the solution is 0and11501.1,76997.1 321 === xxx .   
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Problem 4. 
This problem requires steady state mass balances on a single-stage liquid-liquid extractor. 
 
Consider an extractor: 

extractor

Raffinate
R, {xR,b, xR,c, xR,f}

Extract
E, {xE,b, xE,c, xE,f}

Solvent
S, {xS,b, xS,c, xS,f}

Feed
F, {xF,b, xF,c, xF,f}  

 
In this system, a solvent stream, S, removes an impurity, b=benzene, from a feed stream, F.  Exiting the extractor are 
two streams, the raffinate stream, R, which is the cleaned-up feed stream, and the extract stream, E, which now 
contains the impurity.  This unit uses a recycled furfural stream as the solvent to extract benzene from a cyclohexane 
product stream.  F, E, S and R are feed rates with units of moles per hour.  The x variables are mole fractions.  The 
mole fractions have two indices.  The first uppercase letter indicates the stream and the second lowercase letter 
indicates the component.  The data you are given is as follows. 
 

??9989.00.0
??0001.09.0
??0010.01.0
/ ?/ ?/ 150/ 100

,,,,

,,,,

,,,,

====
====
====

====

fEfRfSfF

cEcRcScF

bEbRbSbF

xxxx
xxxx
xxxx

hrmolEhrmolRhrmolShrmolF

 

 

The equilibrium constants are:  0.25
,

, ==
bR

bE
b x

x
K , 04.0

,

, ==
cR

cE
c x

x
K  and 0.50

,

, ==
fR

fE
f x

x
K . 

 
You have eight unknowns, the flowrates of the raffinate and extract and the compositions of the raffinate stream and 
the composition of the extract stream. 
 
(a) Write a set of eight independent algebraic equations describing this system. 
(b) Is the set of equations linear or non-linear? 
(c) Solve for the 8 unknowns.  Clearly identify each variable. 
 
For those unfamiliar with liquid-liquid extractors, the relative steady state mass balance has the form  
 
 traditional mole balance:    nconsumptiogenerationoutinonaccumulati −+−=  
 
In this system, since it is at steady state, there is no accumulation term.  There is no chemical reaction so the 
generation and consumption terms are zero.  Each component has two inputs and two outputs.  Furthermore, the sum 
of the mole fractions in each stream must be zero. 
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Solution: 
 
(a) Write a set of eight independent algebraic equations describing this system. 
 
There are three independent mole balances.  Any three of these four can be used. 
 
 benzene mole balance:    bEbRbSbF ExRxSxFx ,,,,0 −−+=  

 cyclohexane mole balance:   cEcRcScF ExRxSxFx ,,,,0 −−+=  

furfural mole balance:    fEfRfSfF ExRxSxFx ,,,,0 −−+=  

total mole balance:    ERSF −−+=0  
 
Furthermore, the sum of the mole fractions must be zero. 
 
 raffinate mole fraction constraint: fRcRbR xxx ,,,1 ++=  

 extract mole fraction constraint: fEcEbE xxx ,,,1 ++=  
 
Finally, the equilibrium ratios can be rewritten as  
 

equilibrium constants for benzene:    0,, =− bEbbR xKx  

equilibrium constants for cyclohexane:   0,, =− cEccR xKx  

equilibrium constants for furfural:    0,, =− fEffR xKx  
 
(b) Is the set of equations linear or non-linear? 
 
The first three equations are nonlinear.  Therefore the entire set of equations must be treated as nonlinear. 
 
(c) Solve for the 8 unknowns.  Clearly identify each variable. 
 
I used the Newton-Raphson with Numerical Derivatives code, nrndn.m.  I altered the input function as follows. 
 
function f = funkeval(x) 
% 
%  these two lines force a column vector of length n 
% 
n = max(size(x)); 
f = zeros(n,1); 
% 
% identify variables 
% 
R = x(1); 
E = x(2); 
xRb = x(3); 
xRc = x(4); 
xRf = x(5); 
xEb = x(6); 
xEc = x(7); 
xEf = x(8); 
% 
%  input parameters 
% 
%  input flow rates 
F = 100.0; % mol/hr 
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S = 150.0; % mol/hr 
% input compositions 
xFb = 0.10; 
xFc = 0.90; 
xFf = 0.00; 
xSb = 0.0010; 
xSc = 0.0001; 
xSf = 0.9989; 
% equilibrium constants 
Kb = 25.0; 
Kc = 0.04; 
Kf = 50.0; 
% 
% write 8 equations 
%  
f(1) = F*xFb + S*xSb - R*xRb - E*xEb; 
f(2) = F*xFc + S*xSc - R*xRc - E*xEc; 
f(3) = F*xFf + S*xSf - R*xRf - E*xEf; 
f(4) = xRb + xRc + xRf - 1.0; 
f(5) = xEb + xEc + xEf - 1.0; 
f(6) = xRb*Kb - xEb; 
f(7) = xRc*Kc - xEc; 
f(8) = xRf*Kf - xEf; 
 
The next challenge is to come up with good initial guesses. I used physically reasonable values.  R = F.  E = S.  The 
compositions of R are close to those of F (but none are zero).  The compositions of E are like S but enriched in b and 
c.  
 
At the command line prompt, I typed 
 
>> [x,err,f] = nrndn([100, 150, 0.01, 0.98, 0.01, 0.1, 0.1, 0.8],1.0e-6,1) 
 
This generated the following output: 
 
iter =    1, err =  7.86e+00 f =  1.32e+01  
 iter =    2, err =  5.09e-01 f =  6.61e-01  
 iter =    3, err =  5.93e-05 f =  1.79e-03  
 iter =    4, err =  3.97e-11 f =  1.20e-09  
  
x =   85.3039  164.6961  0.0024  0.9796  0.0180  0.0604  0.0392  0.9004 
 
err =   3.9656e-11 
 
f =   1.1967e-09 
 
Therefore the program converged in four iterations.  The solution is as follows 
 

9004.00180.09989.00.0
0392.09796.00001.09.0
0604.00024.00010.01.0

/ 70.164/ 30.85/ 150/ 100

,,,,

,,,,

,,,,

====
====
====

====

fEfRfSfF

cEcRcScF

bEbRbSbF

xxxx
xxxx
xxxx

hrmolEhrmolRhrmolShrmolF
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Problem 5.   
Consider a system with two anions, A and B, and two cations, C and H.  The following reactions are possible 
 

+− +↔ HAAH
K1

  reaction 1. 
 

+− +↔ CAAC
K2

  reaction 2. 
 

+− +↔ HBBH
K3

  reaction 3. 
 

+− +↔ CBBC
K4

  reaction 4. 
 
There are a total of eight species:  AH, AC, BH, BC, A-, B-, H+ and C+.  Potentially the composition of each of these 
eight species is unknown.  In general, if we have eight unknowns, then we need eight equations to solve for a unique 
solution.  Four of the equations come from thermodynamic equilibrium coefficients.  Equilibrium coefficients govern 
the distribution of each of these reactions.  Presumably the equilibrium coefficients are given. 
 

[ ][ ]
[ ]AH

HAK
+−

=1  or  [ ] [ ][ ]
1K
HAAH

+−

=   equation 1. 

[ ][ ]
[ ]AC

CAK
+−

=2  or  [ ] [ ][ ]
2K
CAAC

+−

=   equation 2. 

[ ][ ]
[ ]BH

HBK
+−

=3  or  [ ] [ ][ ]
3K
HBBH

+−

=   equation 3. 

[ ][ ]
[ ]BC

CBK
+−

=4  or  [ ] [ ][ ]
4K
CBBC

+−

=   equation 4. 

 
Four more reactions come from molar balances on A, B, C and H. 
 

[ ] [ ] [ ] [ ]−++= AACAHATot      equation 5. 

[ ] [ ] [ ] [ ]−++= BBCBHBTot      equation 6. 

[ ] [ ] [ ] [ ]+++= CBCACCTot      equation 7. 

[ ] [ ] [ ] [ ]+++= HBHAHHTot      equation 8. 
 
Presumably the total amounts of each component added to the solution are given.  Often the pH of the solution is 
given, which effectively provides the value of [ ]+H , in which case we have one less unknown and equation 8 is 
redundant. 
 
You could choose to solve this as 8 (or 7) equations with 8 (or 7) unknowns.  Since the relationships in the 
equilibrium coefficients are so simple, one can alternatively eliminate some of the ions (AH, AC, BH and BC) from 
the molar balances.  This leaves just four equations (the molar balances) (three if the pH is given) and four unknowns 
(A-, B-, C+ and H+.), (three if the pH is given). 
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Assume the pH is given.  Solve for the concentration of the other seven ions as a function of pH from 1 to 7 for the 

following parameter values.  Both the equilibrium coefficients and the concentrations have units of 


mol
. 

 
1

1 10−=K , 2
2 10−=K , 3

3 10−=K  and 4
4 10−=K , [ ] 3100.1 −⋅=TotA , [ ] 5100.2 −⋅=TotB , and 

[ ] 3105.0 −⋅=TotC . 
 
Solution: 
 
To solve this problem I used the following script (based on the script in the notes). 
 
script:  paramstep_SolEqlb.m 
% 
%  parameter stepping example 3:  Solution Equilibria 
% 
clear all; 
close all; 
format longe; 
% make current value of lambda available globally 
global pHi 
% 
% set up pH vector 
% 
phlo =1.0; 
phhi = 7.0; 
dph = 0.001; 
nph = (phhi - phlo)/dph + 1; 
phvec = zeros(nph,1); 
phvec=[phlo:dph:phhi]'; 
% 
%  reserve memory for solution matrix 
% 
nvar = 3; 
solmat = zeros(nph,nvar); 
% 
%  initial guess for low pH  
% 
Aguess = 1.0e-3; 
Bguess = 1.0e-3; 
Cguess = 1.0e-3; 
x0=[Aguess; Bguess; Cguess]; 
% set the tolerance and printing switch 
tol=1.0e-6; 
iprint=0; % 0 is off, 1 is on 
% 
%  parameter step 
% 
for i =1:1:nph 
% call Newton-Raphson 
    pHi = phvec(i); 
    [x,err,f] = nrndn_SolEqlb(x0,tol,iprint); 
% store result 
  solmat(i,1:nvar) = x(1:nvar); 
  fmat(i) = f; 
% update initial guess 
  x0(1:nvar) = x(1:nvar); 
end 
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% 
%  plot result  
% 
figure(1) 
semilogy(phvec(1:nph),solmat(1:nph,1),'k-'); 
hold on; 
semilogy(phvec(1:nph),solmat(1:nph,2),'r-'); 
hold on; 
semilogy(phvec(1:nph),solmat(1:nph,3),'b-'); 
hold off; 
xlabel('pH'); 
ylabel('molarity'); 
legend('A','B','C') 
% 
%  plot error 
% 
figure(2) 
semilogy(phvec(1:nph),fmat(1:nph),'k-'); 
xlabel('pH'); 
ylabel('average absolute error on f'); 
  
% 
%  calculate other variables to Reproduce Figure 4 of reference 
% 
global K1 K2 K3 K4 
  
solmat2 = zeros(nph,4); 
for i = 1:1:nph 
    H = 10.0^(-phvec(i)); 
%    OH = 10.0^(-(14.0-phvec(i))); 
    solmat2(i,1) =solmat(i,1)*H/K1; %AH 
    solmat2(i,2) =solmat(i,1)*solmat(i,3)/K2; %AC 
    solmat2(i,3) =solmat(i,2)*H/K3; %BH 
    solmat2(i,4) =solmat(i,2)*solmat(i,3)/K4; %BC 
end 
  
figure(3) 
semilogy(phvec(1:nph),solmat2(1:nph,1),'k-'); 
hold on; 
semilogy(phvec(1:nph),solmat2(1:nph,2),'r-'); 
hold on; 
semilogy(phvec(1:nph),solmat2(1:nph,3),'b-'); 
hold on; 
semilogy(phvec(1:nph),solmat2(1:nph,4),'g-'); 
xlabel('pH') 
ylabel('Molarity') 
legend('AH','AC','BH','BC') 
hold off; 
 
I also modified the nrndn.m input function as follows: 
 
function f = funkeval(x) 
% 
% these two lines force a column vector of length n 
% 
n = max(size(x)); 
f = zeros(n,1); 
% 
% EDIT BELOW: 



D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 

13 

% 
%global variables for post processing 
% 
global pHi 
global K1 K2 K3 K4 
%Setting input variables for solver 
An = x(1); 
Bn = x(2); 
Cp = x(3); 
%Known Molarities & Citrate ratio control 
A_tot = 1.0e-3; 
B_tot = 2.0e-5; 
C_tot = 0.5e-3; 
%H and OH calculator 
pH = pHi; 
%pOH= 14.0-pH; 
Hp = 10.0^(-pH); 
%OH = 10.0^(-pOH); 
%equillibrium constants 
K1 = 1.0e-1; 
K2 = 1.0e-2; 
K3 = 1.0e-3; 
K4 = 1.0e-4; 
% total amount of material 
Atot = 1.0e-3; 
Btot = 1.0e-5; 
Ctot = 0.5e-3; 
%  equilibrium relations 
AH = An*Hp/K1; 
AC = An*Cp/K2; 
BH = Bn*Hp/K3; 
BC = Bn*Cp/K4; 
%Molar Balances 
% left hand side 
A_balance_lhs = Atot; 
B_balance_lhs = Btot; 
C_balance_lhs = Ctot; 
% right hand side 
A_balance_rhs = AH + AC + An; 
B_balance_rhs = BH + BC + Bn; 
C_balance_rhs = AC + BC  + Cp; 
% Functions = RHS - LHS = 0 
f(1) = A_balance_lhs - A_balance_rhs; 
f(2) = B_balance_lhs - B_balance_rhs; 
f(3) = C_balance_lhs - C_balance_rhs; 
 
 
At the command line prompt, I executed the script: 
 
>> paramstep_SolEqlb 
 
which generated the following three plots. 
 



D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 

14 

1 2 3 4 5 6 7
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

pH

m
ol

ar
ity

 

 

A
B
C

 
Figure 1.  Concentrations of A-, B- and C+ as a function of pH. 
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Figure 2.  Error as a function of pH.  This function shows that the tolerance was always satisfied. 
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Figure 3.  Concentration of AH, AC, BH and BC as a function of pH.   

 
 


