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Final Examination Solutions 

May 6, 2019 
 

1.  A System of Non-Linear Parabolic PDEs 

 Consider a plug flow reactor.  (This is a pipe with a reaction taking place in the fluid flowing 

inside it.)  Consider the irreversible dimerization reaction 2A → B  taking place in a non-reactive 

solvent.  The molar balance for each component, A and B, is given by  

 

𝜕𝐶𝑖
𝜕𝑡

= −𝑣𝑧
𝑑𝐶𝑖
𝑑𝑧

+ 𝐷𝑖
𝑑2𝐶𝑖
𝑑𝑧2

+ 𝜈𝑖𝑟 

 

where z is the spatial dimension in the axial direction, t is time, Ci is the molar concentration of 

species i, 𝑣𝑧 is the axial velocity, Di is the diffusion coefficient of species i, i is the 

stochiometric for species i, (namely -2 for A +1 for B) and r is the reaction rate.  The reaction 

rate is given by  

 

𝑟 = 𝑘𝐶𝐴
2 

 

where k is the rate constant.  Assume the reactor is operated isothermally so we have no need for 

an energy balance.  The circular pipe is 10 m long with a diameter of 0.1 m.  The axial velocity is 

0.15 m/s.  The diffusivities are all 2.0x10-9 m2/s.  The rate constant is 𝑘 = 1.0𝑥10−5
𝑚3

𝑚𝑜𝑙 ⋅𝑠
.  

Initially, the pipe contains nothing but solvent.  At the inlet, the reactants, A is fed in at a 

concentration of 1200.0 mol/m3 respectively.  No B is present in the feed stream.  At the outlet, 

assume the concentrations no longer change (i.e. a no flux boundary condition). 

 

(a)  Solve the problem.  Estimate how long it takes this reactor to get to steady state. 

(b)  Show the steady state profile. 

(c)  What is the fractional consumption of A at steady state? Reminder:  𝑌𝐴 =
𝐶𝐴,𝑖𝑛−𝐶𝐴,𝑜𝑢𝑡

𝐶𝐴,𝑖𝑛
. 

(d)  What can be done to the axial velocity to increase the fractional consumption?  How does 

this impact the amount of product, B, made per hour, i.e. the through-put?  Reminder:  𝑄𝐵 =
𝑣𝑧𝐴𝑥𝐶𝐵,𝑜𝑢𝑡 where 𝐴𝑥 is the cross-sectional area of the pipe. 
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Solution: 

 

This is a system of two coupled non-linear parabolic PDEs with one spatial dimension and 

Dirichlet boundary conditions at z=0 and a Neumann boundary conditions at z=10 m.  Moreover, 

this is a system in which convection is dominant.  Therefore, to solve this problem, I will use the 

code parapde_n_anyBC_flow.m. 

 

I modified the input functions in parapde_n_anyBC_flow.m as follows. 

 

I defined the number of PDEs. 

 
%  define number of PDEs 

neq = 2; 

 

I assigned the appropriate type of boundary conditions. 

 
BC(1,1) = 'D'; 
BC(2,1) = 'N'; 
BC(1,2) = 'D'; 
BC(2,2) = 'N'; 

 

I set the final time to 300 seconds and chose dt to be 0.1 seconds, so I had 3000 temporal 

intervals. 
 
% discretize time 
to = 0; 
tf = 3.0e+2; 
dt = 1.0e-1; 

 

The rod spans from 0 to 10.0 meter.  I set dx to be 1.0 m, so I had 10 spatial intervals. 

 
% discretize space 
xo = 0; 
xf = 10.0; 
dx = 1.0e-0; 

 

I defined the PDE in the following function.   
  
function dydt_out = pdefunk(x,t,y,dydx,d2ydx2,keq); 
% molar concentrations [mol/m^3] 
CA = y(1); 
CB = y(2); 
% velocity [m/s] 
v = 0.15; 
% diffusivity [m^2/s] 
D = 2.0e-9; 
DA = 1.0*D; 
DB = 1.0*D; 
%  rate constant [m^6/mol^2/s] 
k = 1.0e-5; 
% stoichiometric coefficients 
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nuA = -2.0; 
nuB = 1.0; 
% reaction rate [mol/m^3/s] 
rate = k*CA*CA; 
dydt(1) = -v*dydx(1) + DA*d2ydx2(1) + nuA*rate; 
dydt(2) = -v*dydx(2) + DB*d2ydx2(2) + nuB*rate; 
dydt_out = dydt(keq); 

 

I defined the IC and BCs in the functions below. 
 
% 
%  function defining initial condition 
% 

  
function ic_out = icfunk(x,keq); 
ic(1) = 0.0; 
ic(2) = 0.0; 
ic_out = ic(keq); 

   
% 
%  functions defining LHS boundary condition 
% 

  
function fout = aBCo(t,k); 
f(1) = 1.0; 
f(2) = 1.0; 
fout = f(k); 

  
function fout = bBCo(t,k); 
f(1) = 0.0; 
f(2) = 0.0; 
fout = f(k); 

  
function fout = cBCo(t,k); 
f(1) = -1200.0; 
f(2) = 0.0; 
fout = f(k); 

  
% 
%  functions defining RHS boundary condition 
% 

  
function fout = aBCf(t,k); 
f(1) = 0.0; 
f(2) = 0.0; 
fout = f(k); 

  
function fout = bBCf(t,k); 
f(1) = 1.0; 
f(2) = 1.0; 
fout = f(k); 

  
function fout = cBCf(t,k); 
f(1) = 0.0; 
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f(2) = 0.0; 
fout = f(k); 

 

At the command line prompt, I typed 

 
[xvec,tvec,Tmat] = parapde_n_anyBC_flow; 

 

 This command generated the following final frame of a movie. 

 

 
 

(a)  Solve the problem.  Estimate how long it takes this reactor to get to steady state. 

 

If a pipe (plug flow reactor) is L = 10 m long and the velocity is 0.15 m/s, then the “residence 

time of the reactor” is given by 𝜏 =
𝐿

𝑣𝑧
, (66.67 s in this example) which sets a lower bound for 

reaching steady state.  Maybe it takes two residence times to reach steady state.  We can examine 

the concentration of A at the outlet as a function of time. 

 

First, make sure you are plotting the correct variables. 

 

The twelfth spatial index is the end of the pipe. 

 
>> xvec(12) 

ans =    10 
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The solution matrix, Tmat, has three indices, space, time, and equation respectively. 
 

>> whos Tmat 

  Name       Size                 Bytes  Class     Attributes 

 

  Tmat      13x3001x2            624208  double    

 

This command plots the first concentration at the twelfth spatial node for all times.  
 

>> plot(tvec,Tmat(12,:,1),'k-') 

 

 
 

The system has pretty clearly reach steady state by 150 sec. 

 

(b)  Show the steady state profile. 

 

The steady state profile is shown above in the final frame of the movie, since the PDEs were 

solved out to steady state. 

 

(c)  What is the fractional consumption of A at steady state? Reminder:  𝑌𝐴 =
𝐶𝐴,𝑖𝑛−𝐶𝐴,𝑜𝑢𝑡

𝐶𝐴,𝑖𝑛
. 

 

The reactant A is input at 1200 mol/m3 and, at the end of the simulation, emerges at  

 
>> Tmat(12,3001,1) 

ans =  487.3180 
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So the fractional consumption is 

 

𝑌𝐴 =
𝐶𝐴,𝑖𝑛 − 𝐶𝐴,𝑜𝑢𝑡

𝐶𝐴,𝑖𝑛
=
1200 − 487.3

1200
= 59.39% 

(d)  What can be done to the axial velocity to increase the fractional consumption?  How does 

this impact the amount of product, B, made per hour, i.e. the through-put?  Reminder:  𝑄𝐵 =
𝑣𝑧𝐴𝑥𝐶𝐵,𝑜𝑢𝑡 where 𝐴𝑥 is the cross-sectional area of the pipe. 

 

Slowing down the axial velocity will increase the residence time and improve the fraction yield. 

 

If we run the code again cutting the velocity in half and increasing the final simulated time to 

400 s, then we have the following final frame of the movie. 

 

 
 

The concentration of A at the pipe outlet at steady state is  
>> Tmat(12,4001,1) 

ans =  315.5597 

 

So the fractional yield is 

 

𝑌𝐴 =
𝐶𝐴,𝑖𝑛 − 𝐶𝐴,𝑜𝑢𝑡

𝐶𝐴,𝑖𝑛
=
1200 − 315.6

1200
= 73.70% 
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Reducing the axial velocity increases the fractional consumption of the reactants. 

 

The through-put is the amount of B produced per unit time.   

 

𝑄𝐵 = 𝑣𝑧𝐴𝑥𝐶𝐵,𝑜𝑢𝑡 = 𝑣(𝜋𝑟2)𝐶𝐵,𝑜𝑢𝑡 
 

For the first case with the higher velocity,  using the final concentration of B, we have 

 
>> Tmat(12,3001,2) 

ans =  356.3410 

 

𝑄𝐴 = 𝑣𝐴𝑋𝐶𝐴,𝑜𝑢𝑡 = 𝑣(𝜋𝑟2)𝐶𝐴,𝑜𝑢𝑡 = 0.15(𝜋𝑟2)356.34 = (𝜋𝑟2)53.45 

 

For the second case with the lower velocity, using the final concentration of B, we have 

 
>> Tmat(12,4001,2) 

ans =  315.5597 

 

𝑄𝐴 = 𝑣𝐴𝑋𝐶𝐴,𝑜𝑢𝑡 = 𝑣(𝜋𝑟2)𝐶𝐴,𝑜𝑢𝑡 = 0.075(𝜋𝑟2)442.22 = (𝜋𝑟2)33.17 

 

The ratio of the high-velocity to low-velocity through-puts is 1.61.  So the higher velocity has a 

lower fractional yield but a higher through-put.   
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2.  Multivariate Nonlinear Optimization 

 

Download the data located at 

http://utkstair.org/clausius/docs/mse510/data/mse510_xm02_p02.txt 

The first column corresponds to wavelength, x.  The second column corresponds to signal 

intensity, y.   

 

Perform a multivariate nonlinear optimization in order to fit this data to two weighted Gaussian 

curves.  The equation for a normalized Gaussian is 

 

 𝑓𝐺(𝑥; 𝜇, 𝜎) =
1

√2𝜋𝜎
𝑒−

1

2
(
𝑥−𝜇

𝜎
)
2

  

 

where 𝜇 is the mean and 𝜎 is the standard deviation.  Your model should take the form 

 

 𝑦𝑚𝑜𝑑𝑒𝑙 = 𝑤1𝑓𝐺(𝑥; 𝜇1, 𝜎1) + 𝑤2𝑓𝐺(𝑥; 𝜇2, 𝜎2)  
 

where 𝑤 is the weighting constant for each Gaussian. 

 

Determine the optimal values of the weighting constant, the mean and the standard deviation for 

each Gaussian. 

 

Solution: 

 

I first plotted the data in order to get a good idea of an initial guess for the mean and variance. 

 

 
 

From this plot, I chose initial guesses of 1.0, 5.0 and 3.0 for the weight, mean and standard 

deviation of one of the Gaussians and  for the three means and 1.0, 12.0 and 2.0 for the weight, 

mean and standard deviation of the other Gaussian.  (These are not particularly good initial 

guesses.) 

http://utkstair.org/clausius/docs/mse510/data/mse510_xm02_p02.txt
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I used the following script, driver_2019_xm02p02.m, to perform the optimization with the 

amoeba method and plot the result. 

 
clear all; 

close all; 

format long; 

  

global datamat 

datamat = [0.00    0.000408181 

0.02    0.000415796 

0.04    0.000419199 

... 1000+ lines of data omitted here ... 

22.78   4.83169E-15 

22.8    4.71657E-15 

22.82   4.56922E-15]; 

  

% 

%  initial guesses 

% 

xo(1) = 1.0; % first weight 

xo(2) = 5.0; % first mean 

xo(3) = 3.0; % first standard deviation 

xo(4) = 1.0; % first weight 

xo(5) = 12.0; % first mean 

xo(6) = 2.0; % first standard deviation 

  

% 

% call amoeba for optimization 

% 

[f,x,iter] = amoeba(xo,1.0e-6,1.0e-6) 

  

% 

% evaluate model with optimized parameters 

% 

ngauss = 2; 

w(1) = x(1); 

mu(1) = x(2); 

sig(1) = x(3); 

w(2) = x(4); 

mu(2) = x(5); 

sig(2) = x(6); 

% 

ndata = max(size(datamat)); 

xvec(1:ndata) = datamat(1:ndata,1); 

yexp(1:ndata) = datamat(1:ndata,2); 

fac = sqrt(2.0*pi); 

for i = 1:1:ndata 

    ymod(i) = 0.0; 

    for j = 1:1:ngauss 
       ymod(i) = ymod(i) + w(j)/(sig(j)*fac)*exp(-((xvec(i)-mu(j))^2)/(2.0*sig(j)^2));  

    end 

end 

  

% 

%  plot data and solution 
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% 

figure(1); 

plot(xvec(:),yexp(:),'ko'); 

hold on; 

plot(xvec(:),ymod(:),'r-'); 

hold off; 

legend('experiment','model') 

ylabel('intensity'); 

xlabel('wavelength'); 

  

 

The objective function used by amoeba.m contains the same content as this script, namely 
 
function fobj = funkeval_prob(x) 

% 

%convert variables 

ngauss = 2; 

w(1) = x(1); 

mu(1) = x(2); 

sig(1) = x(3); 

w(2) = x(4); 

mu(2) = x(5); 

sig(2) = x(6); 

% 

global datamat 

  

ndata = max(size(datamat)); 

xvec(1:ndata) = datamat(1:ndata,1); 

yexp(1:ndata) = datamat(1:ndata,2); 

fac = sqrt(2.0*pi); 

for i = 1:1:ndata 

    ymod(i) = 0.0; 

    for j = 1:1:ngauss 
       ymod(i) = ymod(i) + w(j)/(sig(j)*fac)*exp(-((xvec(i)-mu(j))^2)/(2.0*sig(j)^2));  

    end 

end 

fobj = 0.0; 

for i = 1:1:ndata 

    fobj = fobj + (yexp(i) - ymod(i))^2; 

end 

  

At the command line prompt, I typed: 

 
>> driver_2019_xm02p02 

 

This generated the following output. 
 
i =    1   1.0000000e+00   5.0000000e+00   3.0000000e+00   1.0000000e+00   1.2000000e+01   2.0000000e+00 f =   3.2034128e+01  

i =    2   1.5000000e+00   5.0000000e+00   3.0000000e+00   1.0000000e+00   1.2000000e+01   2.0000000e+00 f =   3.1907926e+01  

i =    3   1.0000000e+00   7.5000000e+00   3.0000000e+00   1.0000000e+00   1.2000000e+01   2.0000000e+00 f =   2.4637052e+01  

i =    4   1.0000000e+00   5.0000000e+00   4.5000000e+00   1.0000000e+00   1.2000000e+01   2.0000000e+00 f =   3.0777992e+01  

i =    5   1.0000000e+00   5.0000000e+00   3.0000000e+00   1.5000000e+00   1.2000000e+01   2.0000000e+00 f =   2.7497234e+01  

i =    6   1.0000000e+00   5.0000000e+00   3.0000000e+00   1.0000000e+00   1.8000000e+01   2.0000000e+00 f =   5.8630095e+01  

i =    7   1.0000000e+00   5.0000000e+00   3.0000000e+00   1.0000000e+00   1.2000000e+01   3.0000000e+00 f =   3.4626772e+01  

 

f =   0.298179364165348 

 

x = 

  Columns 1 through 3 
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   0.893981456484229   6.974082099302574   1.987878576798020 

  Columns 4 through 6 

   1.812625724433016  10.493582054819676   1.000474985186837 

 

iter =   335 

  

The method converged in 335 iterations.  The values of the parameters are given by 
 

x =    [0.8940    6.9741    1.9879    1.8126   10.4936    1.0005] 

 

Thus 𝑤1 = 0.894, 𝜇1 = 6.974, 𝜎1 = 1.988, 𝑤2 = 1.813, 𝜇2 = 10.494, 𝜎2 = 1.000 

 

The script can be modified to call the conjugate gradient method instead of the amoeba method.  

The call to the amoeba function should be replaced with the following line. 

 
[f,x] = polak(xo,1.0e-6,1,'min') 

 

The method converged in 64 iterations.  The values of the parameters are the same as those 

generated by the amoeba method. 
 

x =    [0.8940    6.9741    1.9879    1.8126   10.4936    1.0005] 


