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Midterm Examination Solutions 

February 26, 2019 
 

1.  Dynamic Behavior and Stability of a Pendulum with Drag 

Consider a simple model of a rigid pendulum moving in an atmosphere with non-negligible drag.  

The model describing the motion of the pendulum is given by 

 

 
𝑑2𝜃

𝑑𝑡2
=

1

𝑚 ℓ
(−𝑚𝑔𝑠𝑖𝑛(𝜃) −

1

2
𝜌ℓ

𝑑𝜃

𝑑𝑡
𝐶𝐷𝐴) 

 

where 𝜃 is the angle in radians defined as the deviation from normal, m is the mass of the 

pendulum, ℓ is the length of the pendulum, g is acceleration due to gravity, 𝜌 is the density of the 

medium in which the pendulum swings, 𝐶𝐷 is the drag coefficient, A is the cross-sectional area of 

the pendulum, and t is time. 

 

Consider the following numerical parameters, 𝑚 = 1.0 kg, ℓ = 1.0 m,  𝑔 = 9.8 𝑚/𝑠2, 

𝜌𝑣𝑎𝑐𝑢𝑢𝑚 = 0.0 𝑘𝑔/𝑚3 ,  𝜌𝑎𝑖𝑟 = 1.225 𝑘𝑔/𝑚3,  𝜌𝑤𝑎𝑡𝑒𝑟 = 1000.0 𝑘𝑔/𝑚3, 𝐴 = 0.01 𝑚2 and 

𝐶𝐷 = 0.47. 

 

For parts (a) through (f) of the problem, consider the following initial conditions, at time t = 0,  

  𝜃 =
𝜋

2
   and 

𝑑𝜃

𝑑𝑡
= 0. 

 

(a)  Is this ODE linear or nonlinear? 

(b)  Convert the second order ODE to a system of first order ODEs. 

(c)  Numerically solve for the dynamic behavior of the pendulum for 100 seconds for the 

pendulum operating in vacuum.  Sketch the behavior. 

(d)  Numerically solve for the dynamic behavior of the pendulum for 100 seconds for the 

pendulum operating in air.  Sketch the behavior. 

(e)  Numerically solve for the dynamic behavior of the pendulum for 100 seconds for the 

pendulum operating in water.  Sketch the behavior. 

(f)  Determine the critical point of the system. 

(g)  Construct the Jacobian of the system of ODEs and evaluate it at the critical point. 

(h)  Report the eigenvalues of the Jacobian at the critical point for vacuum, air and water. 

(i)  State the stability of the systems based on the solution of the ODEs and the eigenvalues.  

Sketch phase plot, if necessary. 

(j)  extra credit:  Is it possible to change the stability of the pendulum?  Is it possible to lose all 

oscillatory behavior in the pendulum? 
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Solution: 

 

(a)  Is this ODE linear or nonlinear? 

 

This ODE is nonlinear in  𝜃 because of the sine function.   

 

(b)  Convert second order ODE to a system of first order ODEs. 

 

There is a three-step process to accomplish this transformation.  First, identify each new variable. 

 𝑦1 = 𝜃 

 𝒚𝟐 =
𝑑𝜃

𝑑𝑡
 

 

Second, write the ODE for each new variable. 

 
𝑑𝑦1

𝑑𝑡
= 𝑦2 

 
𝑑𝑦2

𝑑𝑡
=

1

𝑚 ℓ
(−𝑚𝑔𝑠𝑖𝑛(𝑦1) −

1

2
𝜌ℓ𝑦2𝐶𝐷𝐴) 

 

Third, write the ICs for each variable. 

 𝒚𝟏(𝒕𝒐) =
𝜋

2
 

 𝒚𝟐(𝒕𝒐) = 0 

 

(c)  Numerically solve for the dynamic behavior of the pendulum for 100 seconds for the 

pendulum operating in vacuum.  Sketch the behavior. 

 

I will use the Classical fourth-order Runge-Kutta method to solve this problem.   

I modified the input function for rk4n.m  

 
function dydx = funkeval(x,y); 

m = 1.0; %kg 

len = 1.0; %m 

A = 0.01; % m^2 

pi = 2.0*asin(1.0); 

g = 9.8; % m/s^2 

rho_vacuum = 0.0; % kg/m^3 (vacuum) 

rho_air = 1.225; % kg/m^3 (air) 

rho_water = 1000.0; % kg/m^3 (water) 

rho = rho_vacuum; 

CD = 0.47;  

dydx(1) = y(2); 

dydx(2) = 1.0/(m*len)*(-m*g*sin(y(1)) - 0.5*rho*len*y(2)*CD*A); 

 

At the command line prompt, I typed 

 
>> [x,y]=rk4n(1000,0,100,[asin(1.0),0.0]); 

 

This command yielded the following plot. 
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(d)  Numerically solve for the dynamic behavior of the pendulum for 100 seconds for the 

pendulum operating in air.  Sketch the behavior. 

 

Using the same code as in part (c), I changed the density to that for air.  I typed the same 

command. 

 
>> [x,y]=rk4n(1000,0,100,[asin(1.0),0.0]); 

 

This command yielded the following plot. 
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(e)  Numerically solve for the dynamic behavior of the pendulum for 100 seconds for the 

pendulum operating in water.  Sketch the behavior. 

 

Using the same code as in part (c), I changed the density to that for water.  I typed the same 

command. 

 
>> [x,y]=rk4n(1000,0,100,[asin(1.0),0.0]); 

 

This command yielded the following plot. 
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(f)  Determine the critical point of the system. 

 

To determine the critical point, set the ODEs to zero and solve the resulting system of non-linear 

algebraic equations. 

 

 
𝑑𝑦1

𝑑𝑡
= 0 = 𝑦2 

 
𝑑𝑦2

𝑑𝑡
= 0 =

1

𝑚 ℓ
(−𝑚𝑔𝑠𝑖𝑛(𝑦1) −

1

2
𝜌ℓ𝑦2𝐶𝐷𝐴) 

 

By inspection the first equation yields 𝑦2 = 0.  The second equation then becomes 

 

 0 = 𝑠𝑖𝑛(𝑦1) 

 

which has a root at  𝑦1 = 0.  

 

Thus the critical point is at (𝑦1, 𝑦2) = (0,0) = (𝜃,
𝑑𝜃

𝑑𝑡
) 

 

(g) Construct the Jacobian of the system of ODEs and evaluate it at the critical point. 
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𝑱 =

[
 
 
 
 
𝑑𝑓1
𝑑𝑦1

𝑑𝑓1
𝑑𝑦2

𝑑𝑓2
𝑑𝑦1

𝑑𝑓2
𝑑𝑦2]

 
 
 
 

= [
0 1

−
𝑔

ℓ
𝑐𝑜𝑠(𝑦1) −

1

2

𝜌𝐶𝐷𝐴

𝑚

] 

 

If we evaluate the Jacobian at the critical point (𝑦1, 𝑦2) = (0,0) we have 

 

𝑱 = [
0 1

−
𝑔

ℓ
−

1

2

𝜌𝐶𝐷𝐴

𝑚

] 

 

(h)  Report the eigenvalues of the Jacobian at the critical point. 

 

𝑱 − 𝜆𝑰 = [
−𝜆 1

−
𝑔

ℓ
−

1

2

𝜌𝐶𝐷𝐴

𝑚
− 𝜆

] 

 

The determinant of this matrix is the characteristic equation. 

 

det(𝑱 − 𝜆𝑰) = 0 = −𝜆 (−
1

2

𝜌𝐶𝐷𝐴

𝑚
− 𝜆) +

𝑔

ℓ
= 𝜆2 +

1

2

𝜌𝐶𝐷𝐴

𝑚
𝜆 +

𝑔

ℓ
 

 

Using the quadratic formula to find the roots of a quadratic polynomial, we have 

 

λ=
−

1

2

𝜌𝐶𝐷𝐴

𝑚
±√(

1

2

𝜌𝐶𝐷𝐴

𝑚
)
2
−4

𝑔

ℓ

2
 

 

When the density is zero, as is the case in vacuum, the eigenvalues are  

 

λ= ±√
𝑔

ℓ
𝑖 

 

For vacuum, λ= ± 3.1305i. 

For air, λ= −0.0014 ± 3.1305i. 

For water, λ= −1.1750 ± 2.9016i. 

 

(i)  State the stability of the systems based on the solution of the ODEs and the eigenvalues.  

Sketch phase plot, if necessary. 

 

In vacuum, the pendulum is a center.  The eigenvalues are purely imaginary.  It will oscillate 

forever. A phase plot is shown below. 
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In air and water, the pendulum is a stable, spiral.  The eigenvalues are complex and the real 

components are negative. 

 

A phase plot of the air system is shown below.  It has a slow decay. 
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A phase plot of the water system is shown below.  It has a relatively fast decay. 
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(j)  extra credit:  Is it possible to change the stability of the pendulum?  Is it possible to have a 

non-zero density without decaying to the critical point? 

 

Is it possible to change the stability of the pendulum?  

 

No, the real component of the eigenvalues is 𝑟𝑒𝑎𝑙(𝜆) = −
1

4

𝜌𝐶𝐷𝐴

𝑚
.  This is always negative since 

density, mass, area and the drag coefficient are physical properties that cannot take on negative 

values. 

 

Is it possible to lose all oscillatory behavior in the pendulum? 

 

We will lose any imaginary component of the trajectory when the discriminant, (
1

2

𝜌𝐶𝐷𝐴

𝑚
)
2

− 4
𝑔

ℓ
, 

is set to zero. 

 

(
1

2

𝜌𝐶𝐷𝐴

𝑚
)
2

− 4
𝑔

ℓ
= 0 

 

Solving for density, we have 

 

𝜌 =
𝑚

𝐶𝐷𝐴
4√

𝑔

ℓ
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If we set the density to a value higher than this limit, we should have purely real eigenvalues and 

we should see the behavior of a stable, improper node. 

 

In the example below, I set the density to 1% higher than this limit, 𝜌𝑑𝑒𝑛𝑠𝑒 = 2690.9 𝑘𝑔/𝑚3, 

which yields purely real eigenvalues of -2.7180 and -3.6056  and the following plot 

 

 
 

A phase plot is shown below.  It has no oscillatory behavior. 
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