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MSE 510 
Final Examination Solutions 

May 5, 2015 
 
1.  Single Variable Nonlinear Optimization 
 
Download the data located at 
http://utkstair.org/clausius/docs/mse510/data/mse510_xm02_p01.txt 
This data represents the results of a set of experiments intended to measure the variance in the 
particle size of a crystallization process.  The data is essentially a histogram with the first column 
corresponding to variance, x, and the second column corresponding to probability, f.  From 
theory this data should follow the chi-squared distribution, given by 
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The chi-squared distribution has one parameter, v, the degrees of freedom.  ( )(x  is the gamma 
function, an intrinsic function in Matlab, gamma(x).) Perform a single variable nonlinear 
optimization in order to fit the data to this model.  Report the optimal value of v.  As a good 
initial guess, consider that the population mean of the chi-squared distribution is v. 
 
 
Solution: 
 
I decided to use Brent’s line minimization method to solve this 1-D nonlinear optimization 
problem.   
 
I first plotted the data to get a feel for its shape. 
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It appears to me that there is a peak about 8.   
 
I created the following objective function, which corresponds to the sum of the square of the 
errors (SSE) between the data and the model in funkeval.m.   
 
function f = funkeval(x); 
v = x; 
datamat = [    4.13607015 0.04732715  
  6.53404815 0.09233015  
  ... 
  20.40535115 0.00804915  
  15.83540515 0.03117115  ]; 
xdata = datamat(:,1); 
fdata = datamat(:,2); 
ndata = length(xdata); 
fac = 1.0/(2.0^(v/2.0)*gamma(v/2.0)); 
for i = 1:1:ndata 
    fmod(i) = fac*xdata(i)^(v/2.0-1.0)*exp(-xdata(i)/2.0); 
end 
f = 0.0; 
for i = 1:1:ndata 
    f = f + (fmod(i) - fdata(i))^2; 
end 
 
I created the brackets and called Brent’s line minimization with the following two commands. 
 
>> [ax, bx, cx] = mnbrak1(1,8,'min'); 
>> [f,vmin] = brent(ax,bx,cx,1.0e-6,1,'min'); 
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This generated the following output. 
 
boundary 1:  a =  9.98e+00 f(a) =  1.56e-04  
boundary 2:  b =  9.98e+00 f(b) =  1.56e-04  
best guess:  x =  9.98e+00 f(x) =  1.56e-04  
2nd best guess:  w =  9.98e+00 f(w) =  1.56e-04  
previous w:  v =  9.98e+00 f(v) =  1.56e-04  
most recent point:  u =  9.98e+00 f(u) =  1.56e-04  
error =  3.04e-06 iter =    28  
  
ANSWER =  9.976226e+00   
 
The method converged in 28 iterations.  The values of v is given by 9.98.  A plot (not required 
for the solution) of the data and the model is provided below. 
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2. Single Non-Linear Parabolic PDE 
 The one-dimensional heat equation can describe heat transfer in a material with both heat 
conduction and radiative heat loss. 
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where the following variables [with units] are given as 
 temperature in the material T [K] 
 surrounding temperature 77sT  [K] 

 axial position along material z [m] 
 thermal conductivity k 401 [J/K/m/s] (for Cu) 
 mass density   8960 [kg/m3] (for Cu) 

 heat capacity 6.384pC  [J/kg/K] (for Cu) 

 Stefan–Boltzmann constant 8105.670373  x  [J/s/m2/K4] 
 gray body permittivity 15.0  (for dull Cu) 
 surface area to volume ratio 80S  [m-1] (for a cylindrical rod of diameter 0.05 m) 
 
A cylindrical Cu rod of diameter 0.05 m and length 0.5 m is initially at 800)0,( tzT  K.  One 
end of the rod is maintained at 900),0(  tzT K.  The other end of the rod is insulated, 

0
3.0


zdz

dT
 K/m.   

 
(a)  Plot the transient behavior.   
(b) Find the approximate steady-state temperature in the material at z=0.5 m. 
 
Solution: 
 
This is a single non-linear parabolic PDE with one spatial dimension and a Dirichlet boundary 
condition at z=0 and a Neumann boundary condition at z=0.5.  To solve this problem, I will use 
the code parapde_1_anyBC.m. 
 
I modified the input functions in parapde_1_anyBC.m as follows. 
 
I assigned the appropriate type of boundary conditions. 
 
BC(1) = 'D'; 
BC(2) = 'N'; 
 
I set the final time to 1000 seconds and chose dt to be 1.0 seconds, so I had 1,000 temporal 
intervals. 
 
% discretize time 
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to = 0; 
tf = 1.0e+3; 
dt = 1.0e+0; 
 
The rod spans from 0 to 0.5 meter.  I set dx to be 0.05 m, so I had 10 spatial intervals. 
 
% discretize space 
xo = 0; 
xf = 0.5; 
dx = 5.0e-2; 
 
I defined the PDE in the following function.   
  
% 
%  function defining PDE 
% 
function k = pdefunk(x,t,y,dydx,d2ydx2); 
% 
Temp = y; 
% rho = density [kg/m^3] 
rho = 8960.0; 
% Cp = heat capacity [J/kg/K] 
Cp = 384.6; 
% k = thermal conductivity [W/m/K] 
k = 401.0; 
%  alpha = thermal diffusivity 
alpha = k/rho/Cp; 
% length of rod [m] 
L = 0.5; 
% diameter in [m] 
radius = 0.025; 
diameter = 2.0*radius; 
% surface Area in [m^2] 
Area = pi*diameter*L; 
% Volume in [m^3] 
Volume = pi/4*diameter^2*L; 
% surface area to volume ratio 
S = Area/Volume; 
%  Temperature of the surroundings [K] 
Tsurround = 77.0; 
% Stefan-Boltzmann constant [J/s/m^2/K^4] 
sigma = 5.670373e-8; 
% gray body permittivity [dimensionless] 
eps = 0.15; 
fac = eps*sigma*S/(rho*Cp); 
k = alpha*d2ydx2 - fac*(Temp^4 - Tsurround^4); 
 
I defined the IC and BCs in the functions below. 
 
% 
%  function defining initial condition 
% 
  
function ic = icfunk(x); 
ic = 800; 
  
% 
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%  functions defining LHS boundary condition 
% 
  
function f = aBCo(t); 
f = 1; 
  
function f = bBCo(t); 
f = 0; 
  
function f = cBCo(t); 
f = -900; 
  
% 
%  functions defining RHS boundary condition 
% 
 
function f = aBCf(t); 
f = 0; 
  
function f = bBCf(t); 
f = 1; 
  
function f = cBCf(t); 
f = 0; 
 
 
At the command line prompt, I typed 
 
[xvec,tvec,Tmat] = parapde_1_anyBC; 
 
 This command generated the following plot. 
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To find the last value at x = 0.5 m, I confirmed that I knew the correct spatial and temporal 
indices. 
 
>> xvec(12) 
ans =    0.5000 
 
>> tvec(1001) 
ans =  1000 
 
>> Tmat(12,1001) 
ans =  798.5048 
 
Therefore the temperature at the end at 1000 seconds is 798.5 K. 
 
I don’t know that this is steady state.  I can run the simulation longer.  If I change nothing but the 
final time to 5000 seconds, then I generate the data point 
 
>> [xvec,tvec,Tmat] = parapde_1_anyBC; 
>> Tmat(12,5001) 
ans =  804.1653 
 
Therefore the temperature at the end at 5000 seconds is 804.2 K. 
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The two answers are quite different, so we are not at steady state.   If I change nothing but the 
final time to 10,000 seconds, then I generate the data point 
 
 
>> [xvec,tvec,Tmat] = parapde_1_anyBC; 
>> Tmat(12,10001) 
ans =  804.1757 
 
Therefore the temperature at the end at 10,000 seconds is 804.2 K.  This is pretty close to the 
steady state temperature. 
 
Below is the corresponding plot. 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
780

800

820

840

860

880

900

position (m)

T
em

pe
ra

tu
re

 (
K

)

 
 



D. Keffer, MSE 510, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville 

9 

3.  ODE Boundary Value Problem 
 
Consider the following boundary value problem, which represents the steady state profile in 
Problem 2. 
 

 44
2

2

0 s
pp

TT
C

S

dz

Td

C

k






 

 
with the boundary conditions  
 
 900)0(  oTzT  K 

 0)5.0(  fTz
dz

dT
 K/m 

 
where all of the parameters are given in problem 2. 
 
(a)  Convert this single second-order ODE, to a system of two first-order ODEs. 
(b)  Plot the solution. 
(c) What is the temperature gradient at z = 0? 
(d) What is the temperature at z = 0.5? 
 
Solution: 
(a)  Convert this single second-order ODE, to a system of two first-order ODEs. 
 
Follow the three step process.  First, define new variables. 
 

 Ty 1    
dz

dT
y 2  

 
Second write the ODEs in the new variables. 
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Third, write the conditions in terms of the new variables. 
 
 900)0(1  oTzy  

 0)5.0(2  fTzy  
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To solve this BVP, I will use both the code for Newton-Raphson method with Numerical 
Derivatives for 1 equation (nrnd1.m) and the classical 4th-order Runge-Kutta method for N 
equations (rk4n.m). 
 
I modified the input function in nrnd1.m as follows: 
 
function f = funkeval(x) 
xo = 0; 
xf = 0.5; 
yo_1 = 900; 
yo_2 = x; 
yf_2 = 0.0; 
n = 1000; 
[x,y]=rk4n(n,xo,xf,[yo_1,yo_2]); 
yf_2_calc = y(n+1,2); 
f = yf_2_calc-yf_2; 
 
I entered the ODEs in the input file for rk4n.m as follows 
 
function dydx = funkeval(x,y); 
k = 401.0; 
L = 0.5; 
radius = 0.025; 
diameter = 2.0*radius; 
Area = pi*diameter*L; 
Volume = pi/4*diameter^2*L; 
S = Area/Volume; 
Tsurround = 77.0; 
sigma = 5.670373e-8; 
eps = 0.15; 
fac = eps*sigma*S/k; 
dydx(1) = y(2); 
dydx(2) = fac*(y(1)^4 - Tsurround^4); 
 
At the command line prompt, I typed 
 
>> [x0,err] = nrnd1(-100) 
 
where -100 K/m was my initial guess for the initial slope, based on my solution to problem 2.  
This command generated the following output. 
 
>> [x0,err] = nrnd1(-100); 
icount = 1 xold = -1.000000e+02 f = 5.158883e+02 df = 1.781830e+00 xnew = -3.895273e+02  err = 1.000000e+02  
icount = 2 xold = -3.895273e+02 f = 3.928538e+01 df = 1.525552e+00 xnew = -4.152789e+02  err = 6.201033e-02  
icount = 3 xold = -4.152789e+02 f = 2.417708e-01 df = 1.506880e+00 xnew = -4.154393e+02  err = 3.862048e-04  
icount = 4 xold = -4.154393e+02 f = 9.594935e-06 df = 1.506766e+00 xnew = -4.154393e+02  err = 1.532812e-08  
 
x0 = -415.4393 
err =   1.5328e-08 
 
The Newton Raphson method converged in four iterations.  The initial slope is -415.4393 K/m. 
 
The converged solution can be viewed by typing the following command,  
 
>>  [x,y]=rk4n(1000,0,0.5,[900, -415.4393]); 
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The resulting figure is provided below. 
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We can confirm that this is the solution to the boundary condition by checking the value of y at 
the final value of x. 
 
>> >> y(1001,1) 
 
ans =  804.1158 K 
 
This solution agrees with our solution of the PDE given above. 
 


