
D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

1

Final Examination Solutions
May 6, 2014

1. Multivariate Nonlinear Optimization

Download the data located at
http://utkstair.org/clausius/docs/mse506/data/mse506_xm02_p01.txt
The first column corresponds to wavelength. The second column corresponds to signal intensity.

Perform a multivariate nonlinear optimization in order to fit this data to a series of Gaussian
curves.

2

2

1

2

1
),;(

x

exf

Determine the minimum number of Gaussian curves necessary and the mean and standard
deviation of each.

Solution:

I decided to use the amoeba method to solve this problem.

I first plotted the data in order to determine how many Gaussians were necessary.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x-axis

si
gn

al

experiment

model

It appears to me that three curves are necessary. From this plot, I chose initial guesses of 6, 11
and 15 for the three means and 3, 3 and 2 for the standard deviations. (These are not particularly
good initial guesses.)

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

2

I used the following script to perform the optimization and plot the result.

clear all;
close all;
%
% input data
%
global datamat
datamat = [0 0.011506086
0.02 0.012146601
0.04 0.015849062
...
22.78 0.000109832
22.8 0.000105579
22.82 0.000100679];
%
% initial guess
%
mu1 = 6;
sig1 = 3;
mu2 = 11;
sig2 = 3;
mu3 = 15;
sig3 = 2;
xo = [mu1,sig1,mu2,sig2,mu3,sig3];
%
% call amoeba
%
[f,x] = amoeba_xm02p01(xo,1.0e-8,1.0e-8);
%
% plot
%
n = 3;
%
% read in mean and standard deviation
%
for i = 1:1:n
 mu(i) = x(2*i-1);
 sig(i) = x(2*i);
end
ndata = max(size(datamat));
xvec(1:ndata) = datamat(1:ndata,1);
yexp(1:ndata) = datamat(1:ndata,2);
fac = sqrt(2.0*pi);
for i = 1:1:ndata
 ymod(i) = 0.0;
 for j = 1:1:n
 ymod(i) = ymod(i) + 1.0/(sig(j)*fac)*exp(-((xvec(i)-mu(j))^2)/(2.0*sig(j)^2));
 end
end
%
% plot
%
figure(1);
plot(xvec,yexp,'ko');
hold on;
plot(xvec,ymod,'k-');
hold off;
legend('experiment','model');
xlabel('x-axis');
ylabel('signal');

The objective function used by amoeba.m contains the same content as this script, namely

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

3

function fobj = funkeval(x)
n = 3;
%
% read in mean and standard deviation
%
for i = 1:1:n
 mu(i) = x(2*i-1);
 sig(i) = x(2*i);
end
%
global datamat

ndata = max(size(datamat));
xvec(1:ndata) = datamat(1:ndata,1);
yexp(1:ndata) = datamat(1:ndata,2);
fac = sqrt(2.0*pi);
for i = 1:1:ndata
 ymod(i) = 0.0;
 for j = 1:1:n
 ymod(i) = ymod(i) + 1.0/(sig(j)*fac)*exp(-((xvec(i)-mu(j))^2)/(2.0*sig(j)^2));
 end
end
fobj = 0.0;
for i = 1:1:ndata
 fobj = fobj + (yexp(i) - ymod(i))^2;
end
fobj = sqrt(fobj/ndata);

At the command line prompt, I typed:

>> xm02p01m

This generated the following output.

i = 1 6.0000000e+00 3.0000000e+00 1.1000000e+01 3.0000000e+00 1.5000000e+01 2.0000000e+00 f = 1.4659212e-01
i = 2 6.6000000e+00 3.0000000e+00 1.1000000e+01 3.0000000e+00 1.5000000e+01 2.0000000e+00 f = 1.4605742e-01
i = 3 6.0000000e+00 3.3000000e+00 1.1000000e+01 3.0000000e+00 1.5000000e+01 2.0000000e+00 f = 1.4498941e-01
i = 4 6.0000000e+00 3.0000000e+00 1.2100000e+01 3.0000000e+00 1.5000000e+01 2.0000000e+00 f = 1.4251167e-01
i = 5 6.0000000e+00 3.0000000e+00 1.1000000e+01 3.3000000e+00 1.5000000e+01 2.0000000e+00 f = 1.4790593e-01
i = 6 6.0000000e+00 3.0000000e+00 1.1000000e+01 3.0000000e+00 1.6500000e+01 2.0000000e+00 f = 1.5249627e-01
i = 7 6.0000000e+00 3.0000000e+00 1.1000000e+01 3.0000000e+00 1.5000000e+01 2.2000000e+00 f = 1.4598268e-01
 1 6.0000000e+00 3.0000000e+00 1.2100000e+01 1.4251167e-01 5.4985740e-02 6.7690401e-02
 2 6.0000000e+00 3.0000000e+00 1.2100000e+01 1.4251167e-01 5.4985740e-02 3.7148286e-02
 3 6.4000000e+00 3.2000000e+00 1.1733333e+01 1.3909108e-01 1.0001374e-01 5.2512959e-02
 4 6.4000000e+00 3.2000000e+00 1.1733333e+01 1.3909108e-01 9.7297567e-02 4.8861146e-02
...
 1104 8.0733740e+00 4.0070509e+00 1.6006770e+01 2.4339112e-02 6.8303891e-08 9.5363380e-14
 1105 8.0733739e+00 4.0070515e+00 1.6006770e+01 2.4339112e-02 9.2493218e-08 3.8915101e-14
 1106 8.0733742e+00 4.0070508e+00 1.6006770e+01 2.4339112e-02 2.7847165e-08 4.1908571e-14
 1107 8.0733745e+00 4.0070511e+00 1.6006770e+01 2.4339112e-02 9.3561784e-09 3.1645247e-14

The method converged in 1107 iterations. The values of the parameters are given by

>> x

x = 8.0734 4.0071 16.0068 1.0018 12.0067 0.4954

Thus 07.81 , 01.41 , 01.162 , 00.12 , 01.123 , 50.03

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

4

2. Single Non-Linear Parabolic PDE
 The one-dimensional heat equation can describe heat transfer in a material with both heat
conduction and radiative heat loss.

 44

2

2

t s
pp

TT
C

S

dz

Td

C

kT

where the following variables [with units] are given as
 temperature in the material T [K]
 surrounding temperature 300sT [K]

 axial position along material z [m]
 thermal conductivity k 401 [J/K/m/s] (for Cu)
 mass density 8960 [kg/m3] (for Cu)

 heat capacity 6.384pC [J/kg/K] (for Cu)

 Stefan–Boltzmann constant 8105.670373 x [J/s/m2/K4]
 gray body permittivity 15.0 (for dull Cu)
 surface area to volume ratio 200S [m-1] (for a cylindrical rod of diameter 0.05 m)

A cylindrical Cu rod of diameter 0.05 m and length 0.3 m is initially at 1000)0,(tzT K.
One end of the rod is maintained at 1000),0(tzT K. The other end of the rod is insulated,

0
3.0

zdz

dT
 K/m.

(a) Plot the transient behavior.
(b) Find the approximate steady-state temperature in the material at z=0.3 m.

Solution:

This is a single non-linear parabolic PDE with one spatial dimension and a Dirichlet boundary
condition at z=0 and a Neumann boundary condition at z=0.3. To solve this problem, I will use
the code parapde_1_anyBC.m.

I modified the input functions in parapde_1_anyBC.m as follows.

I assigned the appropriate type of boundary conditions.

BC(1) = 'D';
BC(2) = 'N';

I set the final time to 1000 seconds and chose dt to be 0.1 seconds, so I had 10,000 temporal
intervals.

% discretize time

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

5

to = 0;
tf = 1.0e+3;
dt = 1.0e-1;

The rod spans from 0 to 0.1 meter. I set dx to be 0.005 m, so I had 60 spatial intervals.

% discretize space
xo = 0;
xf = 0.3;
dx = 5.0e-3;

I defined the PDE in the following function.

%
% function defining PDE
%
function k = pdefunk(x,t,y,dydx,d2ydx2);
%
Temp = y;
% rho = density [kg/m^3]
rho = 8960.0;
% Cp = heat capacity [J/kg/K]
Cp = 384.6;
% k = thermal conductivity [W/m/K]
k = 401.0;
% alpha = thermal diffusivity
alpha = k/rho/Cp;
% length of rod [m]
L = 0.3;
% diameter in [m]
radius = 0.025;
diameter = 2.0*radius;
% surface Area in [m^2]
Area = pi*diameter*L;
% Volume in [m^3]
Volume = pi/4*diameter^2*L;
% surface area to volume ratio
S = Area/Volume;
% Temperature of the surroundings [K]
Tsurround = 300.0;
% Stefan-Boltzmann constant [J/s/m^2/K^4]
sigma = 5.670373e-8;
% gray body permittivity [dimensionless]
eps = 0.15;
fac = eps*sigma*S/(rho*Cp);
k = alpha*d2ydx2 - fac*(Temp^4 - Tsurround^4);

I defined the IC and BCs in the functions below.

%
% function defining initial condition
%

function ic = icfunk(x);
ic = 1000;

%

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

6

% functions defining LHS boundary condition
%

function f = aBCo(t);
f = 1;

function f = bBCo(t);
f = 0;

function f = cBCo(t);
f = -1000;

%
% functions defining RHS boundary condition
%

function f = aBCf(t);
f = 0;

function f = bBCf(t);
f = 1;

function f = cBCf(t);
f = 0;

At the command line prompt, I typed

[xvec,tvec,Tmat] = parapde_1_anyBC;

 This command generated the following plot.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

7

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
940

950

960

970

980

990

1000

position (m)

T
em

pe
ra

tu
re

 (
K

)

To find the last value at x = 0.3 m, I confirmed that I knew the correct spatial and temporal
indices.

>> xvec(62)
ans = 0.3000

>> tvec(10001)
ans = 1000

>> Tmat(62,10001)
ans = 940.0365

Therefore the temperature at the end at 1000 seconds is 940.04 K.

I don’t know that this is steady state. I can run the simulation longer. If I change nothing but the
final time to 5000 seconds, then I generate the data point

>> [xvec,tvec,Tmat] = parapde_1_anyBC_xm02p02;
>> Tmat(62,50001)
ans = 938.7146

Therefore the temperature at the end at 5000 seconds is 938.71 K.

The two answers agree to two digits, so we are pretty close to the steady state solution, but we
can run for a longer time. If I change nothing but the final time to 10000 seconds, then I
generate the data point

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

8

>> [xvec,tvec,Tmat] = parapde_1_anyBC_xm02p02;
>> Tmat(62,100001)
ans = 938.7146

Therefore the temperature at the end at 10,000 seconds is 938.71 K. This is the steady state
temperature.

Below is the corresponding plot.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
930

940

950

960

970

980

990

1000

position (m)

T
em

pe
ra

tu
re

 (
K

)

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

9

3. ODE Boundary Value Problem

Consider the following boundary value problem

 A
A kC

dx

Cd
D

2

2

0

with the boundary conditions

 0.1)0(oAA CxC mol/m3

 1.0)2(fAA CxC mol/m3

where

 5100.1 D m2/s
 5100.1 k 1/s

(a) Convert this single second-order ODE, to a system of two first-order ODEs.
(b) Plot the solution.
(c) What is the concentration gradient at x = 0?

Solution:
(a) Convert this single second-order ODE, to a system of two first-order ODEs.

Follow the three step process. First, define new variables.

 ACy 1
dx

dC
y A2

Second write the ODEs in the new variables.

 2
1 y

dx

dy

 1
2 y

D

k

dx

dy

Third, write the conditions in terms of the new variables.

 0.1)0(1 oACxy

 1.0)2(1 fACxy

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

10

To solve this BVP, I will use both the code for Newton-Raphson method with Numerical
Derivatives for 1 equation (nrnd1.m) and the classical 4th-order Runge-Kutta method for N
equations (rk4n.m).

I modified the input function in nrnd1.m as follows:

function f = funkeval(x)
xo = 0;
yo_1 = 1;
yo_2 = x;
xf = 2.0;
yf = 0.1;
n = 1000;
[x,y]=rk4n(n,xo,xf,[yo_1,yo_2]);
yf_calc = y(n+1,1);
f = yf_calc-yf;

I entered the ODEs in the input file for rk4n.m as follows

function dydx = funkeval(x,y);
D = 1.0e-5;
k = 1.0e-5;
dydx(1) = y(2);
dydx(2) = k/D*y(1);

At the command line prompt, I typed

>> [x0,err] = nrnd1(0.5)

where 0.5 was my initial guess for the initial slope. This command generated the following
output.

icount = 1 xold = 5.000000e-01 f = 5.475626e+00 df = 3.626860e+00 xnew = -1.009743e+00 err = 1.000000e+02
icount = 2 xold = -1.009743e+00 f = 2.506051e-12 df = 3.626860e+00 xnew = -1.009743e+00 err = 6.843356e-13

x0 = -1.0097

err = 6.8434e-13

The initial slope is -1.0097.

Not surprisingly this converged in one iteration (with a second iteration required for
confirmation) because the ODEs are linear in the unknown, y.

The converged solution can be viewed by typing the following command,

>> [x,y]=rk4n(1000,0,2,[1,-1.0097]);

The resulting figure is provided below.

D. Keffer, MSE 506, Dept. of Materials Science & Engineering, University of Tennessee, Knoxville

11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1.5

-1

-0.5

0

0.5

1

x

y

1

2

We can confirm that this is the solution to the boundary condition by checking the value of y at
the final value of x.

>> y(1001,1)

ans = 0.1002

