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Midterm Examination Solutions 
February 25, 2014 

 
1.  Solution of a System of Nonlinear Algebraic Equations 
 
Consider the set of nonlinear algebraic equations 
 
 94100 3

21  xx  

   14exp0 2
21  xx  

 
(a) Use the multivariate Newton-Raphson method to find the roots to this system of equations 
near (2,2) and (-1,1).  Report the RMS error on x and the number of iterations to converge. 
 
Solution: 
I used the code nrndn.m  I modified the last two lines of the input file as follows. 
 
function f = funkeval(x) 
n = max(size(x)); 
f = zeros(n,1); 
f(1) = 10*x(1) - 4*x(2)^3 +9; 
f(2) = exp(x(1)) - 4*x(2)^2 + 1; 
 
To find the root near (2,2), at the command prompt, I typed 
 
>> [x,err,f] = nrndn([2,2],1.0e-6,1) 
 
This generated the following output. 
 
>> [x,err,f] = nrndn([2,2],1.0e-6,1) 
 iter =    1, err =  1.17e+00 f =  5.78e+00  
 iter =    2, err =  3.86e-01 f =  1.28e+01  
 iter =    3, err =  1.73e-01 f =  3.17e+00  
 iter =    4, err =  3.05e-02 f =  4.13e-01  
 iter =    5, err =  8.36e-04 f =  1.07e-02  
 iter =    6, err =  6.30e-07 f =  7.99e-06  
  
x =    2.8136    2.1017 
 
err =   6.2953e-07 
 
f =   7.9882e-06 
 
Therefore, the root near (1,1) is  21, xx  = (2.8136,2.1017).  The RMS error on x is 6.2x10-7.  It 
took six iterations to converge. 
 
To find the root near (-1,1), at the command prompt, I typed 
 
>> [x,err,f] = nrndn([-1,1],1.0e-6,1) 
 
This generated the following output. 
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 iter =    1, err =  2.42e-01 f =  4.00e+00  
 iter =    2, err =  7.23e-02 f =  8.47e-01  
 iter =    3, err =  3.15e-03 f =  3.15e-02  
 iter =    4, err =  8.86e-06 f =  8.40e-05  
 iter =    5, err =  1.64e-10 f =  1.82e-09  
  
x =   -0.8133    0.6007 
 
err =   1.6358e-10 
 
f =   1.8203e-09 
 
Therefore, the root near (-1,1) is  21, xx  = (-0.8133,0.6007).   The RMS error on x is 1.6x10-10.  
It took five iterations to converge. 
 
2.  Solution of a System of Ordinary Differential Equations 
The Van der Pol oscillator is a non-conservative oscillator with non-linear damping.  It evolves 
in time according to the second order differential equation, 
 

   01 2
2

2

 x
dt

dx
x

dt

xd   

 
where x is the position coordinate, which is a function of the time t, and μ is a scalar parameter 
indicating the nonlinearity and the strength of the damping. 
 
(a) Convert this second order ODE to a system of two first order ODEs. 
(b) Use the classical fourth-order Runge Kutta method to solve this ODE from 0t  to 10t  
for 21  and subject to the initial conditions,   10 tx  and   00 tx .  Sketch the plot 
and report the value of x at t = 10. 
 
solution: 
 
(a) Convert this second order ODE to a system of two first order ODEs. 
 
There is a three-step procedure to converting a higher order ODE to a system of first order 
ODEs. 
 
First, identify the new variables. 
 

 xy 1    and   
dt

dx
y 2  

 
Second, write the new ODEs in terms of the new variables 
 

 2
1 y
dt

dy
    and     12

2
1

2 1 yyy
dt

dy
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Third, write the initial conditions in terms of the new variables. 
 
   101 ty    and     002 ty  
 
(b) Use the classical fourth-order Runge Kutta method to solve this ODE from 0t  to 10t  
for 21  and subject to the initial condition,   0.10 tx .  Sketch the plot and report the 
value of x at t = 10. 
 
I used the code rk4n.m. 
 
I changed the input function to  
 
function dydx = funkeval(x,y); 
mu = 0.5; 
dydx(1) = y(2); 
dydx(2) = mu*(1-y(1)^2)*y(2)-y(1); 
 
At the command line prompt, I typed 
 
>> [x,y]=rk4n(100,0,10,[1,0]); 
 
This is the plot that was generated. 
 
To obtain the value of x(t=10), I 
accessed the last value of the first 
variable. 
 
>> y(101,1) 
ans =   -1.4601 
 
Therefore,   -1.460110 tx  

 
To confirm that my answer is reasonable, 
I reran the code with 1000 intervals. 
>> [x,y]=rk4n(1000,0,10,[1,0]); 
 
This is the plot that was generated. 
 
To obtain the value of x(t=10), I accessed 
the last value of the first variable. 
 
>> y(1001,1) 
ans =    -1.4601 
 
Therefore,   1.4601- 10 tx  
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3.  Formulation and Solution of a System of Linear Algebraic Equations 
Consider a liquid-liquid extractor as shown in the figure below that removes benzene from a 
primarily cyclohexane Feedstream using a furfural Solvent stream. 

extractor

Raffinate
R, {xR,b, xR,c, xR,f}

Extract
E, {xE,b, xE,c, xE,f}

Solvent
S, {xS,b, xS,c, xS,f}

Feed
F, {xF,b, xF,c, xF,f}  

 
You are given all four flow rates and the compositions of the Feed (F) and Solvent (S) streams.  
Your task is to determine the composition of the two exiting streams, the Raffinate (R) and 
Extract (E). 
 

??9989.00.0

??0001.09.0

??0010.01.0

/ 155/ 95/ 150/ 100

,,,,

,,,,

,,,,







fEfRfSfF

cEcRcScF

bEbRbSbF

xxxx

xxxx

xxxx

hrmolEhrmolRhrmolShrmolF

 

 
An analysis of the system yields six equations for your six unknowns. 
 
 (1) a benzene molar balance:    bSbFbEbR SxFxExRx ,,,,   

 (2) a cyclohexane molar balance:     cScFcEcR SxFxExRx ,,,,   

 (3)  raffinate mole fractions sum to unity: 1,,,  fRcRbR xxx  

 (4) extract mole fractions sum to unity:  1,,,  fEcEbE xxx  

 (5) benzene equilibrium constraint:  0.20
,

, 
bR

bE
b x

x
K  

 (6) c-hexane equilibrium constraint:  01.0
,

, 
cR

cE
c x

x
K  

 
(a) Formulate the equations as a system of six linear algebraic equations in six unknowns. 
(b) Convert the equations to matrix notation, bxA  .  Identify A , x  and b . 

(c) Determine and report the compositions of the Raffinate and Extract streams. 
 
Solution: 
 
(a) Formulate the equations as a system of six linear algebraic equations in six unknowns. 
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 benzene mole balance:     bSbFbEbR SxFxExRx ,,,,   

 cyclohexane mole balance:     cScFcEcR SxFxExRx ,,,,   

 raffinate mole fraction constraint:  1,,,  fRcRbR xxx  

 extract mole fraction constraint:  1,,,  fEcEbE xxx  

 benzene equilibrium constraint:  0,,  bbRbE Kxx  

 c-hexane equilibrium constraint:  0,,  ccRcE Kxx  

 
(b) Convert the equations to matrix notation, bxA  .  Identify A , x  and b . 
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(c) Determine and report the compositions of the Raffinate and Extract streams. 
 
I created the Matlab Script titled exam01_s14_p01.m and provided below. 
 
clear all; 
  
F = 100; 
S = 150; 
R = 95; 
E = 155; 
xFb = 0.1; 
xFc = 0.9; 
xFf = 0.0; 
xSb = 0.001; 
xSc = 0.0001; 
xSf = 0.9989; 
Kb = 20.0; 
Kc = 0.010; 
  
A = [R 0 0 E 0 0  
    0 R 0 0 E 0 
    1 1 1 0 0 0 
    0 0 0 1 1 1 
    -Kb 0 0 1 0 0 
    0 -Kc 0 0 1 0]; 
  
b= [F*xFb + S*xSb 
    F*xFc + S*xSc 
    1 
    1 
    0 
    0]; 
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detA = det(A) 
invA = inv(A); 
x = invA*b 
 
At the Matlab prompt, I typed 
 
>>  exam01_s14_p01 
 
This yielded the following output  
 
detA =   3.0848e+05 
 
x = 
    0.0032 
    0.9323 
    0.0645 
    0.0635 
    0.0093 
    0.9271 

 
Therefore the unknown compositions are  
 

x(1) = 0.0032 = bRx ,   x(2) = 0.9323 = cRx ,   x(3) = 0.0645  = fRx ,  

x(4) = 0.0635 = bEx ,   x(5) = 0.0093 = cEx ,   x(6) = 0.9271= fEx ,  

 


