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ChE/MSE 505 

Advanced Mathematic for Engineers 
Final Exam 

Fall Semester, 2001 
Instructor:  David Keffer 

Administered:  Tuesday December 11, 2001 
 
Consider the integro-differential equation 
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with the initial condition 
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(a)  Characterize the equation as linear or nonlinear. 
(b)  Use a numerical method to find an approximate solution to )x(φ  from xo to xf.  Use a 
discretization step of 1x =∆ .  You are free to solve this as you choose, as long as you state your 
assumptions.  However, I suggest you use a centered-finite difference formula to approximate 
the derivative at internal nodes and a backward-finite difference formula to approximate the 
derivative at the last node.  Also, I suggest you use the trapezoidal rule to approximate the 
integral, although that too is not mandatory.  I would like to see numerical values for the 
solution. 
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Solution:   
Since the range of interest is 2 and the step size is 1, we will have n=2 intervals and n+1=3 points 
where the function is to be evaluated.  Of these three points, the first is given by the initial 
condition.  The solution will be of the form 
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But only the last two of these are unknown.  So it is more useful to write our vector of unknowns 
as only 
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We use a centered finite difference form to evaluate the derivative at all nodes except the first 
node, where we are forced to use a forward finite difference formula, and the last node, where we 
are forced to use a backward finite difference formula.   
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where n is the number of intervals.  We use the Trapezoidal rule to evaluate the integral 
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Substituting the finite difference rule and the Trapezoidal rule into the original equation for i=1 
and i=2, yields 
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This is a system of 2 linear algebraic equations, which can be expressed as 
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The solution is given by  
 
 bA 1−=φ  
 
Let’s numerically evaluate the matrix A and vector b 
 
i x c0 c1 c2 c3 N(x,0) N(x,1) N(x,2) 

0 0 1 -1 -1 0 1 0.367879 0.135335
1 1 1 -1 -1 -1.71828 2.718282 1 0.367879
2 2 1 -1 -1 -6.38906 7.389056 2.718282 1

 
A matrix   b vector  A inverse   phi 
         

-2 0.31606  3.577423   -0.22986 -0.1453  -2.28748
-3.71828 -0.5  10.08358  1.709397 -0.91946  -3.15617

 
 
det(A) =  2.175201 
 
The solution is plotted below for several different numbers of intervals.  You can see that it takes 
100 or so intervals to really get a good approximation of the solution. 
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