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Chapter 6.  Numerical Integration 

 

6.1.  Introduction 

Many undergraduates prefer differentiation to integration because the rules for differentiation 
are few and once they are known virtually any analytical function can be readily differentiated.  
Integration, although it is the inverse operation of differentiation, is much less loved because, 
depending upon one’s familiarity, analytical integration involves searching through integral tables 
with no hope that an analytical form of the integral even exists.   

Thus numerical integration is welcomed because it provides a simple and methodical 
procedure to evaluate integrals, without resorting to tables and regardless of the existence of an 
analytical form.  That said, if an analytical form of the integral exists, it is preferable to use it.  
From a physical point of view, having an analytical function gives us insight into the parameters 
appearing within the function.  From a professional point of view, we will be laughed at by our 
peers if we try to present work using numerical integration where an analytical form was readily 
apparent.  Still, if there is a problem to be solved and no analytical integral in sight, numerical 
integration can, more often than not, come to the rescue. 
 

6.2.  Trapezoidal Rule 

The Trapezoidal rule gets its name from the use of trapezoids to approximate integrals.  
Consider that you want to integrate a function, )(xf , from a to b.  The trapezoidal rule says that 
the integral of that function can be approximated by a trapezoidal with a base of length (b-a) and 
sides of height )(af  and )(bf .  Graphically, the trapezoidal rule is represented in Figure 6.1. 

The single-interval trapezoidal rule is expressed as  
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The right hand side of equation 

(6.1) is the expression for the area of 
a trapezoid, shown in the Figure 6.1.  
Now, it is quite easy to imagine a 
case where the single-interval 
trapezoidal rule is going to give a 
terrible estimate.  Consider the curve 
shown in Figure 6.2. (top).  In order 
to increase the accuracy of the 
trapezoidal rule, one can approximate 
the integral by many smaller 
trapezoids.  One can see in Figure 6.2. 
(bottom) that as the number of 

trapezoids increases, the area of the 
integral not accounted for by the 
trapezoidal rule decreases.   

If we are integrating from a to b 
using n trapezoids (or intervals), then 
the base of each trapezoid (or 
discretization in the x-dimension) is  
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The area of each of these smaller 

trapezoids, iA , is  
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where the position of each point, ix , 

is given  
 

hiaxi *)1(    (6.4) 

 
for i = 1 to n+1.  We note that if there 
are n intervals, there must be n+1 
points, with x1 = a and xn+1=b. 

The integral is given by the summation of the areas of all the trapezoids: 
 

 
Figure 6.1.  Schematic of trapezoidal rule for integration. 

  
Figure 6.2.  Accuracy of the trapezoidal rule improves as 
the number of trapezoids used increases. 
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The quantity )( ixf  appears twice in the summation of equation (6.5).  It appears once as the left-

hand-side of the trapezoid that forms the ith interval and it occurs once as the right-hand-side of the 
trapezoid that forms the i-1th interval.  This is true of all )( ixf  except the endpoints, )(af  and 

)(bf .   For these reasons, equation (6.5) can be algebraically manipulated to yield: 
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This is the most common form of the mutliple-interval trapezoidal rule.   The accuracy of the 

trapezoidal rule increases as n  increases.  The trapezoidal rule is a first order method, which 
means two things.  First, a first-order polynomial (a straight line) has been used to approximate the 
along each interval.  Second, the error is proportional to the interval size to the first power.  
Halving the size of the interval halves the error.  We postpone a comparative discussion of the 
accuracy of various methods until more methods have been introduced.  Suffice it to say that the 
trapezoidal rule is not very accurate and we would prefer when possible to use higher order 
methods. 

A MATLAB code which implements the trapezoidal rule  is provided later in this chapter. 
 

6.2.  Second-Order Simpson’s Rule 

The Second-Order Simpson’s 
Rule (often called the Simpson’s 
1/3 Rule although not in this book) 
is another technique used for 
numerical integration.  A more 
accurate approach to integration 
involves the use of higher order 
polynomial approximating the 
integrand.  The Second-Order 
Simpson’s Rules uses a second-
order (quadratic) polynomial. 

The application of the 2nd order 
Simpson’s rule is demonstrated 
graphically in Figure 6.3.  The 

 
Figure 6.3.  Schematic of second-order Simpson’s rule 
for integration. 
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function is evaluated at three points (or equivalently across two intervals).  A parabola is fit 
through those three points.  Since there is a simple analytical formula for the integral of the 
parabola, the integration is then done analytically. 

The derivation of the second-order Simpson’s rule for numerical integration is an interesting 
application of linear algebra and regression skills that we already know from Chapters 1 and 2.  
Consider that we have three equally spaced points, 1x , 2x  and 3x .  The 2x  and 3x  are related to 1x  

by xxx  12  and xxx  213 .  We also know the function value evaluated at these three 

points, )( 1xf , )( 2xf , )( 3xf . 

We are going to fit a second-order polynomial (parabola) to these three points.  Since a 
parabola has three coefficients, we can perfectly fit the three points, ))(,( 11 xfx , ))(,( 22 xfx  and 

))(,( 33 xfx .  Substituting these three points into a second-order polynomial yields 
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We have a system of three algebraic equations.  Moreover, the equations are linear in the 

unknown coefficients.  We can write these equations in matrix form, bxA  , where  
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The solution to this system of equations is  
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At this point we have the coefficients of our parabola.  Now we want to integrate the parabola 

from 1x  to 3x . 
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We substitute in the formulae for 2c , 1c , and 0c .  We also substitute in xxx  12  and 

xxx  213 .  After a lot of messy but straightforward algebra, we find that the expression 

simplifies to: 
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This is the second-order Simpson’s rule where we have only 2 intervals (one parabola).  If we 

divide the interval up into many intervals, then we have to sum each of the integrated intervals up.  
Just as was the case with the trapezoidal rule, the first and last points appear only once.  Each 
interior point at the beginning or end of a parabola will be counted twice.  Each point in the center 
of the parabola is counted once, but has a weighting factor of four.  So, our final second-order 
Simpson’s rule for n-intervals (n+1 points) is: 
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Again, as was the case for the Trapezoidal rule, the second-order Simpson’s rule provides 

greater accuracy if the range is broken up into a number of intervals.  For the the second-order 
Simpson’s rule, the number of intervals, n , must be even because, as you can see in the above plot, 
each polynomial fit requires 2 intervals.   

 For the same number of intervals, the second-order Simpson’s rule is more accurate than 
the trapezoidal rule because we used a high-order polynomial to fit the original function.  Because 
the second-order Simpson’s rule is second order, the error is proportional to the interval size to the 
second power.  Halving the size of the interval reduces the error by a factor of four.  We postpone 
a comparative discussion of the accuracy of various methods until more methods have been 
introduced.   

A MATLAB code which implements the second-order Simpson’s rule  is provided later in this 
chapter. 
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6.3.  Higher Order Simpson’s Rules 

The third-order Simpson’s rule uses a third order (cubic) polynomial fit over three intervals to 
approximate the integral.  The derivation of the method is precisely analogous to that for the 
second-order method.  We present the result with proof.  For a single application (three intervals or 
four points), the integral is   
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If we want to use many intervals, then we need to add up these individual components.  We must 
also use a number of intervals that is a multiple of 3. 
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The fourth-order Simpson’s rule uses a fourth order (quartic) polynomial fit over four intervals 

to approximate the integral.  For a single application (four intervals or five points), the integral is  
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If we want to use many intervals, then we need to add up these individual components.  We 

must also use a number of intervals that is a multiple of 4. 
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MATLAB codes which implement the third-order and fourth-order Simpson’s rule are 

provided later in this chapter. 
 

6.5.  Quadrature 

Quadrature takes a slightly different approach to the numerical evaluation of integrals.  
Quadrature is based on the assumption that we can get a better estimate of the integral with fewer 
function evaluations if we use non-equally spaced points at which to evaluate the function.  The 
determination of these points and the weighting coefficients that correspond to each data point 
follows a methodical procedure.  We do not derive them here. 
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The integral for the nth order Gaussian Quadrature is given by: 
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The particular values of the weighting constants, c, and the points where we evaluate the function, 
x, can be taken from a table in any numerical methods text book. 

The advantage of a quadrature technique is that it can be quite accurate for very few function 
evaluations.  Thus it is much faster and if need to repeatedly evaluate integrals it is the method of 
choice.  For the evaluation of a couple integrals, the Simpson’s Rules are better because we know 
we can increase accuracy by increasing the number of intervals used. 

MATLAB codes which implement Gaussian Quadrature for 2nd to 6th order are provided later 
in this chapter. 

6.6.  Example 

We want to evaluate the change in entropy of methane for an isothermal expansion or 
compression.  To describe the thermodynamic state of the fluid, we will rely on tried and true 
friend, the van der Waals equation of state. 
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           (4.16) 

 
where P  is pressure (Pa), T  is temperature (K), V  is molar volume (m3/mol), R  is the gas 
constant (8.314 J/mol/K = 8.314 Pa*m3/mol/K), a  is the van der Waal’s attraction constant (.2303 
Pa*m6/mol2 for methane) and b is the van der Waal’s repulsion constant (4.306x10-5 m3/mol for 
methane).  The change in entropy for an isothermal expansion without phase change is 
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The partial derivative of the pressure with respect to temperature at constant molar volume for a 
van der Waal’s gas is obtained from differentiating the van der Waals EOS. 
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so the change in entropy is 
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We can analytically evaluate this integral so as to provide a basis of comparison for the accuracy 
of the various numerical techniques.  The analytical integral is . 
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The pressure as a function of 

molar volume is shown in Figure 
6.4. for van der Waals methane at 
298 K.  The partial derivative, 

VT

P










, as a function of molar 

volume is also shown in Figure 
6.4. for van der Waals methane at 
298 K.  The deriviative is the 
function we will need to 
numerically integrate. in order to 
obtain the entropy difference.  It is 
a smooth, monotonically 
decreasing function in our range 
of interest. 

Let’s expand the gas from 
0.03 m3/mol to 0.1 m3/mol.  We 
compare results using the 
analytical solution, and several 
numerical methods in Table 6.1.  
What is immediately obvious is 
that as we increase the number of 
intervals for a given order of 
method, we see a gradual increase 
in accuracy. In quadrature as we 
increase the order of the method, 
we decrease the error by an order 
of magnitude.  Also, as we increase the order of a Simpson’s-type method, we see a drastic 
increase in accuracy.  For example it takes 100,000 intervals in the Trapezoidal rule to equal the 
accuracy of 100 intervals in the Simpson’s Fourth Order Method.  Quadrature is even more 
efficient.  A 6-point quadrature equals the accuracy of 1000 trapezoidal intervals in this example.

 

 
Figure 6.4.  (top) Pressure as a function of molar volume 

at 298 K for van der Waals methane.  (bottom) 
VT

P










 as 

a function of molar volume at 298 K for van der Waals 
methane.   
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Technique # of 

intervals 
)//( KmolJS percent error 

analytical  - 10.0182 0.0 
    
Trapezoidal  1 12.62476 2.60E+01 
Trapezoidal  2 10.79212 7.73E+00 
Trapezoidal   3 10.38034 3.61E+00 
Trapezoidal  4 10.22639 2.08E+00 
Trapezoidal  10 10.05242 3.42E-01 
Trapezoidal 100 10.01854 3.44E-03 
Trapezoidal 1000 10.01819 3.44E-05 
Trapezoidal 10000 10.01819 3.44E-07 
Trapezoidal 100000 10.01819 3.44E-09 
    
Simpson's 2nd Order  2 10.18124 1.63E+00 
Simpson's 2nd Order  4 10.03781 1.96E-01 
Simpson's 2nd Order  10 10.01892 7.30E-03 
Simpson's 2nd Order  100 10.01819 8.17E-07 
Simpson's 2nd Order  1000 10.01819 8.18E-11 
    
Simpson’s 3rd Order 3 10.09979 8.14E-01 
Simpson’s 3rd Order 6 10.02738 9.18E-02 
Simpson’s 3rd Order 9 10.02040 2.21E-02 
Simpson’s 3rd Order 99 10.01819 1.91E-06 
Simpson’s 3rd Order 999 10.01819 1.85E-10 
    
Simpson’s 4th Order 4 10.02825 1.00E-01 
Simpson’s 4th Order 8 10.01869 4.96E-03 
Simpson’s 4th Order 100 10.01819 3.39E-09 
Simpson’s 4th Order 1000 10.01819 3.55E-14 
    
Quadrature 2nd Order 2   9.91943 9.86E-01 
Quadrature 3rd Order 3 10.00942 8.75E-02 
Quadrature 4th Order 4 10.01743 7.63E-03 
Quadrature 5th Order 5 10.01812 6.61E-04 
Quadrature 6th Order 6 10.01819 5.70E-05 
    
quad (MATLAB) ? 10.01828 9.20e-04  
quad8 (MATLAB) ? 10.01819 3.36e-08  
 
Table 6.1.  Comparison of accuracy of various numerical integration methods. 
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6.7.  Multidimensional Integrals 

Integrals over an area or a volume are not uncommon in science and engineering.  The most 
conceptually straight forward approach would be to extend the existing one-dimensional 
Simpson’s and quadrature methods to multidimensional integrals through sequential application.  
Let us examine this application, for the simplest case, which involves the Trapezoidal rule for two-
dimensional integration with fixed limits of integration.  This essentially involves integrating a 
function over a rectangular area.   

 
A two-dimensional integral with fixed limits of integration can be written as 
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where the integrand of the outermost integral, )(xg , is  
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This integrand has no dependence on y since that functionality has been integrated out.  As a 

reminder, the 1-D trapezoidal rule using n intervals (n+1 points) is  
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We apply the trapezoidal rule to the integral over y only first and substitute that into )(xg  
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Substituting the discretized approximation for )(xg  in equation (6.16) into equation (6.14) 

yields 
 

   











xf

xo

n

i
ifo

y
xf

xo

yf

yo

dxyxfyxfyxf
h

dxdyyxf
y

2

),(2),(),(
2

),(     (6.17) 

 



Integration - 96 
 
Well, we can repeat the application of the trapezoidal rule: 
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Now we can simplify this as much as possible, 
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If we add up the number of function evaluations, we can see that we have   11  yx nn  

function evaluations.  If nnn yx  , then we have  21n  function evaluations for a 2-D integral.  

By extension, if we need to evaluate an m-dimensional integral, then we will have  mn 1  
function evaluations.  In other words, the number of function evaluations scales exponentially with 
the dimensionality of the system.  By observation we observe that there are four points with a 
weighting factor of one corresponding to the four corners of the area.  There are four sums with a 
weighting factor of two corresponding to the four edges of the area.  There is one double sum with 
a weighting factor of four corresponding to the interior of the area. 

This simple procedure which culminates in the 2-D Trapezoidal rule can be applied to higher 
dimensions.  For example, the 3-D Trapezoidal rule applied to an integral with fixed limits of 
integration yields a corresponding formula.  This volume corresponds to a right parallelepiped.  By 
observation we observe that there are eight points with a weighting factor of one corresponding to 
the eight vertices of the volume.  There are twelve sums with a weighting factor of two 
corresponding to the twelve edges of the volume.  There are six double sums with a weighting 
factor of four corresponding to the six faces of the volume.  There is one triple sum with a 
weighting factor of eight corresponding to the interior of the volume. 
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This is the explicit form of the trapezoidal rule applied in 3-dimensions, when the limits of 

integration are constant 
This simple procedure which culminates in the multidimensional Trapezoidal rule can be 

applied to higher order methods.  For example, the two-dimensional Simpon’s second order 
method applied to an integral with constant limits of integration can be derived in an analogous 
manner and is presented in equation (6.20).  The simplified final expression involves terms with 
weighting factors of one (the corners of the area), weighting factors of two (odd-numbered nodes 
on the edges of the area), weighting factors of four (even-numbered nodes on the edges of the area 
and odd-odd double sums in the interior), weighting factors of eight (odd-even double sums in the 
interior) and weighting factors of sixteen (even-even double sums in the interior).   

For any of these methods, if the boundary of the area over which the integration occurs is not 
regular, simple functions like that given in equation (6.19), (6.20) and (6.21) cannot be written.  
However, the same concept can still be applied.  Integration over y can be performed, generating a 
one-dimensional function )(xg , which can then be integrated. 

For high dimensional integrals with complicated geometries, completely different methods of 
numerical integration are often invoked, including Monte Carlo integration, which randomly 
samples the function.  Such methods are beyond the scope of this introductory text. 
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6.8.  Subroutine Codes 

In this section, we provide a routine for implementing the various numerical integration 
methods described above.  Note that these codes correspond to the theory and notation exactly as 
laid out in this book.  These codes do not contain extensive error checking, which would 
complicate the coding and defeat their purpose as learning tools.  That said, these codes work and 
can be used to solve problems. 

As before, on the course website, two entirely equivalent versions of this code are provided 
and are titled code.m and code_short.m.  The short version is presented here.  The longer version, 
containing instructions and serving more as a learning tool, is not presented here.  The numerical 
mechanics of the two versions of the code are identical. 

 
Code 6.1.  Trapezoidal Rule (trapezoidal_short) 

 
function integral = trapezoidal_short(a,b,nintervals); 
dx = (b-a)/nintervals; 
npoints = nintervals + 1; 
x_vec = [a:dx:b]; 
integral = funkeval(x_vec(1)); 
for i = 2:1:nintervals 
   integral = integral + 2*funkeval(x_vec(i)); 
end 
integral = integral + funkeval(x_vec(npoints)); 
integral = 0.5*dx*integral; 
fprintf(1,'\nUsing the Trapezoidal method \n'); 
fprintf(1,'to integrate from %f to %f with %i nintervals,\n',a,b,nintervals); 
fprintf(1,'the integral is %e \n \n',integral); 
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function f = funkeval(x) 
f = x^2 + 5 - sin(x); 

 
An example of using trapezoidal_short is given below. 
 
» integral = trapezoidal_short(0.03,0.1,100); 
 
Using the Trapezoidal method  
to integrate from 0.030000 to 0.100000 with 100 nintervals, 
the integral is 3.457785e-001  

 
 

Code 6.2.  Simpson’s Second Order Rule (simpson2_short) 
 

function integral = simpson2_short(a,b,nintervals); 
if (mod(nintervals,2) ~= 0) 
   fprintf('Simpsons 2nd method requires an even number of intervals.\n'); 
else 
 dx = (b-a)/nintervals; 
 npoints = nintervals + 1; 
   x_vec = [a:dx:b]; 
   integral_first = funkeval(x_vec(1)); 
   integral_last = funkeval(x_vec(npoints)); 
 integral_4 = 0.0; 
 for i = 2:2:nintervals 
     integral_4 = integral_4 + funkeval(x_vec(i)); 
 end 
 integral_2 = 0.0; 
 for i = 3:2:nintervals-1 
     integral_2 = integral_2 + funkeval(x_vec(i)); 
 end 
   integral = integral_first + integral_last + 4.0*integral_4 + 2.0*integral_2; 
   integral = dx/3*integral; 
 fprintf(1,'\nUsing the Simpsons Second Order method \n'); 
 fprintf(1,'to integrate from %f to %f with %i nintervals,\n', 
a,b,nintervals); 
 fprintf(1,'the integral is %e \n \n',integral); 
end 
 
function f = funkeval(x) 
f = x^2 + 5 - sin(x); 
 
An example of using simpson2_short is given below. 
 
» integral = simpson2_short(0.0,1.0,100) 
 
Using the Simpsons Second Order method  
to integrate from 0.000000 to 1.000000 with 100 nintervals, 
the integral is 4.873636e+000  
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Code 6.3.  Simpson’s Third Order Rule (simpson3_short) 
 

function integral = simpson3_short(a,b,nintervals); 
if (mod(nintervals,3) ~= 0) 
    fprintf('Simpsons 3rd Order method requires a # of intervals that is a 
multiple of 3.\n'); 
else 
 dx = (b-a)/nintervals; 
 npoints = nintervals + 1; 
   x_vec = [a:dx:b]; 
   integral_first = funkeval(x_vec(1)); 
   integral_last = funkeval(x_vec(npoints)); 
 integral_3a = 0.0; 
 for i = 2:3:nintervals-1 
     integral_3a = integral_3a + funkeval(x_vec(i)); 
 end 
 integral_3b = 0.0; 
 for i = 3:3:nintervals 
     integral_3b = integral_3b + funkeval(x_vec(i)); 
 end 
 integral_2 = 0.0; 
 for i = 4:3:nintervals-2 
     integral_2 = integral_2 + funkeval(x_vec(i)); 
 end 
   integral = integral_first + integral_last + 3.0*integral_3a ... 
      + 3.0*integral_3b + 2.0*integral_2; 
   integral = 3.0*dx/8.0*integral; 
 fprintf(1,'\nUsing the Simpsons Third Order method \n'); 
 fprintf(1,'to integrate from %f to %f with %i 
nintervals,\n',a,b,nintervals); 
 fprintf(1,'the integral is %e \n \n',integral); 
end 
 
function f = funkeval(x) 
f = x^2 + 5 - sin(x); 
 
An example of using simpson3_short is given below. 
 
» integral = simpson3_short(0.0,1.0,99) 
 
Using the Simpsons Third Order method  
to integrate from 0.000000 to 1.000000 with 99 nintervals, 
the integral is 4.873636e+000  

 
Code 6.4.  Simpson’s Fourth Order Rule (simpson4_short) 

 
function integral = simpson4_short(a,b,nintervals); 
if (mod(nintervals,4) ~= 0) 
    fprintf('Simpsons 4th Order method requires a # of intervals that is a 
multiple of 4.\n'); 
else 
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 dx = (b-a)/nintervals; 
 npoints = nintervals + 1; 
   x_vec = [a:dx:b]; 
   integral_first = funkeval(x_vec(1)); 
   integral_last = funkeval(x_vec(npoints)); 
 integral_32a = 0.0; 
 for i = 2:4:nintervals-2 
     integral_32a = integral_32a + funkeval(x_vec(i)); 
 end 
 integral_32b = 0.0; 
 for i = 4:4:nintervals 
     integral_32b = integral_32b + funkeval(x_vec(i)); 
 end 
 integral_12 = 0.0; 
 for i = 3:4:nintervals-1 
     integral_12 = integral_12 + funkeval(x_vec(i)); 
 end 
 integral_14 = 0.0; 
 for i = 5:4:nintervals-3 
     integral_14 = integral_14 + funkeval(x_vec(i)); 
   end 
   integral = 7.0*integral_first + 7.0*integral_last + 32.0*integral_32a ... 
      + 32.0*integral_32b + 12.0*integral_12 + 14.0*integral_14; 
   integral = 2.0*dx/45.0*integral; 
 fprintf(1,'\nUsing the Simpsons Fourth Order method \n'); 
 fprintf(1,'to integrate from %f to %f with %i 
nintervals,\n',a,b,nintervals); 
 fprintf(1,'the integral is %e \n \n',integral); 
end 
 
function f = funkeval(x) 
f = x^2 + 5 - sin(x); 
 
An example of using simpson4_short is given below. 
 
» integral = simpson4_short(0.0,1.0,100) 
 
Using the Simpsons Fourth Order method  
to integrate from 0.000000 to 1.000000 with 100 nintervals, 
the integral is 4.873636e+000  

 
Code 6.5.  Gaussian Quadrature (gaussquad_short) 

 
function integral = gaussquad_short(a,b,norder); 
if (norder < 2 | norder > 6) 
   fprintf('This code only works for order between 2 and 6\n'); 
else 
   a0 = 0.5*(b+a); 
   a1 = 0.5*(b-a); 
   if (norder == 2) 
      c(1) = 1.0; 
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      c(2) = c(1); 
      x_table(1) = -0.577350269; 
      x_table(2) = -x_table(1); 
   elseif (norder == 3) 
      c(1) = 0.555555556; 
      c(2) = 0.888888889; 
      c(3) = c(1); 
      x_table(1) = -0.774596669; 
      x_table(2) = 0.0; 
      x_table(3) = -x_table(1); 
   elseif (norder == 4) 
      c(1) = 0.347854845; 
      c(2) = 0.652145155; 
      c(3) = c(2); 
      c(4) = c(1); 
      x_table(1) = -0.861136312; 
      x_table(2) = -0.339981044; 
      x_table(3) = -x_table(2); 
      x_table(4) = -x_table(1); 
   elseif (norder == 5) 
      c(1) = 0.236926885; 
      c(2) = 0.478628670; 
      c(3) = 0.568888889; 
      c(4) = c(2); 
      c(5) = c(1); 
      x_table(1) = -0.906179846; 
      x_table(2) = -0.538469310; 
      x_table(3) = 0.0; 
      x_table(4) = -x_table(2); 
      x_table(5) = -x_table(1); 
   elseif (norder == 6) 
      c(1) = 0.171324492; 
      c(2) = 0.360761573; 
      c(3) = 0.467913935; 
      c(4) = c(3); 
      c(5) = c(2); 
      c(6) = c(1); 
      x_table(1) = -0.932469514; 
      x_table(2) = -0.661209386; 
      x_table(3) = -0.238619186; 
      x_table(4) = -x_table(3); 
      x_table(5) = -x_table(2); 
      x_table(6) = -x_table(1); 
   end 
   integral = 0.0; 
   for i = 1:1:norder 
      x(i) = a0 + a1*x_table(i); 
      f(i) = funkeval(x(i)); 
      integral = integral + c(i)*f(i); 
   end 
   integral = integral*a1;    
   fprintf(1,'\nUsing %i order Gaussian Quadrature \n', norder); 
 fprintf(1,'to integrate from %f to %f \n',a,b); 
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 fprintf(1,'the integral is %e \n \n',integral); 
end 
 
function f = funkeval(x) 
R = 8.314; 
b = 4.306e-5; 
f = R/(x-b); 
 
An example of using guassquad_short is given below. 
 
» integral = gaussquad_short(0.03,0.1,4) 
 
Using 4 order Gaussian Quadrature  
to integrate from 0.030000 to 0.100000  
the integral is 1.001743e+001  

 

6.9.  Problems 

 
Problems are located on course website. 


