
Integration - 86

Chapter 6. Numerical Integration

6.1. Introduction

Many undergraduates prefer differentiation to integration because the rules for differentiation
are few and once they are known virtually any analytical function can be readily differentiated.
Integration, although it is the inverse operation of differentiation, is much less loved because,
depending upon one’s familiarity, analytical integration involves searching through integral tables
with no hope that an analytical form of the integral even exists.

Thus numerical integration is welcomed because it provides a simple and methodical
procedure to evaluate integrals, without resorting to tables and regardless of the existence of an
analytical form. That said, if an analytical form of the integral exists, it is preferable to use it.
From a physical point of view, having an analytical function gives us insight into the parameters
appearing within the function. From a professional point of view, we will be laughed at by our
peers if we try to present work using numerical integration where an analytical form was readily
apparent. Still, if there is a problem to be solved and no analytical integral in sight, numerical
integration can, more often than not, come to the rescue.

6.2. Trapezoidal Rule

The Trapezoidal rule gets its name from the use of trapezoids to approximate integrals.
Consider that you want to integrate a function,)(xf , from a to b. The trapezoidal rule says that
the integral of that function can be approximated by a trapezoidal with a base of length (b-a) and
sides of height)(af and)(bf . Graphically, the trapezoidal rule is represented in Figure 6.1.

The single-interval trapezoidal rule is expressed as

  abbfafdxxf
b

a

)()(
2

1
)((6.1)

Integration - 87

The right hand side of equation

(6.1) is the expression for the area of
a trapezoid, shown in the Figure 6.1.
Now, it is quite easy to imagine a
case where the single-interval
trapezoidal rule is going to give a
terrible estimate. Consider the curve
shown in Figure 6.2. (top). In order
to increase the accuracy of the
trapezoidal rule, one can approximate
the integral by many smaller
trapezoids. One can see in Figure 6.2.
(bottom) that as the number of

trapezoids increases, the area of the
integral not accounted for by the
trapezoidal rule decreases.

If we are integrating from a to b
using n trapezoids (or intervals), then
the base of each trapezoid (or
discretization in the x-dimension) is

n

ab
h


 (6.2)

The area of each of these smaller

trapezoids, iA , is

 )()(
2 hiii xfxf
h

A  (6.3)

where the position of each point, ix ,

is given

hiaxi *)1( (6.4)

for i = 1 to n+1. We note that if there
are n intervals, there must be n+1
points, with x1 = a and xn+1=b.

The integral is given by the summation of the areas of all the trapezoids:

Figure 6.1. Schematic of trapezoidal rule for integration.

Figure 6.2. Accuracy of the trapezoidal rule improves as
the number of trapezoids used increases.

Integration - 88

 



n

i
hii

b

a

xfxf
h

dxxf
1

)()(
2

)((6.5)

The quantity)(ixf appears twice in the summation of equation (6.5). It appears once as the left-

hand-side of the trapezoid that forms the ith interval and it occurs once as the right-hand-side of the
trapezoid that forms the i-1th interval. This is true of all)(ixf except the endpoints,)(af and

)(bf . For these reasons, equation (6.5) can be algebraically manipulated to yield:









 



n

i
i

b

a

xfbfaf
h

dxxf
2

)(2)()(
2

)((6.6)

This is the most common form of the mutliple-interval trapezoidal rule. The accuracy of the

trapezoidal rule increases as n increases. The trapezoidal rule is a first order method, which
means two things. First, a first-order polynomial (a straight line) has been used to approximate the
along each interval. Second, the error is proportional to the interval size to the first power.
Halving the size of the interval halves the error. We postpone a comparative discussion of the
accuracy of various methods until more methods have been introduced. Suffice it to say that the
trapezoidal rule is not very accurate and we would prefer when possible to use higher order
methods.

A MATLAB code which implements the trapezoidal rule is provided later in this chapter.

6.2. Second-Order Simpson’s Rule

The Second-Order Simpson’s
Rule (often called the Simpson’s
1/3 Rule although not in this book)
is another technique used for
numerical integration. A more
accurate approach to integration
involves the use of higher order
polynomial approximating the
integrand. The Second-Order
Simpson’s Rules uses a second-
order (quadratic) polynomial.

The application of the 2nd order
Simpson’s rule is demonstrated
graphically in Figure 6.3. The

Figure 6.3. Schematic of second-order Simpson’s rule
for integration.

Integration - 89

function is evaluated at three points (or equivalently across two intervals). A parabola is fit
through those three points. Since there is a simple analytical formula for the integral of the
parabola, the integration is then done analytically.

The derivation of the second-order Simpson’s rule for numerical integration is an interesting
application of linear algebra and regression skills that we already know from Chapters 1 and 2.
Consider that we have three equally spaced points, 1x , 2x and 3x . The 2x and 3x are related to 1x

by xxx  12 and xxx  213 . We also know the function value evaluated at these three

points,)(1xf ,)(2xf ,)(3xf .

We are going to fit a second-order polynomial (parabola) to these three points. Since a
parabola has three coefficients, we can perfectly fit the three points,))(,(11 xfx ,))(,(22 xfx and

))(,(33 xfx . Substituting these three points into a second-order polynomial yields

0)(1011

2
12  xfcxcxc

0)(2021
2
22  xfcxcxc

0)(3031
2
32  xfcxcxc

We have a system of three algebraic equations. Moreover, the equations are linear in the

unknown coefficients. We can write these equations in matrix form, bxA  , where


















1

1

1

3
2
3

2
2
2

1
2
1

xx

xx

xx

A ,


















0

1

2

c

c

c

x ,


















)(

)(

)(

3

2

1

xf

xf

xf

b

The solution to this system of equations is

     

     





















































2
1

2
131

2
121

2
11

2
131211

2
321

0

1

2

2

 x)(4 2x)(2 3x)(

2

 2)(4 4)(3 2)(
2

)()(2)(

x

xxxfxxxfxxxxf

x

xxxfxxxfxxxf
x

xfxfxf

c

c

c

x

At this point we have the coefficients of our parabola. Now we want to integrate the parabola

from 1x to 3x .

Integration - 90

 
3

1

3

1

0

2
1

3
2

01
2

2 23

x

x

x

x

Simp xc
xcxc

dxcxcxcI 







 

























 10

2
1

3
2

30

2
1

3
2

2323

1133

xc
xcxc

xc
xcxc

I Simp

We substitute in the formulae for 2c , 1c , and 0c . We also substitute in xxx  12 and

xxx  213 . After a lot of messy but straightforward algebra, we find that the expression

simplifies to:

 )()(4)(
3

x
321 xfxfxfI Simp 


 (6.7)

This is the second-order Simpson’s rule where we have only 2 intervals (one parabola). If we

divide the interval up into many intervals, then we have to sum each of the integrated intervals up.
Just as was the case with the trapezoidal rule, the first and last points appear only once. Each
interior point at the beginning or end of a parabola will be counted twice. Each point in the center
of the parabola is counted once, but has a weighting factor of four. So, our final second-order
Simpson’s rule for n-intervals (n+1 points) is:



















 




)()(2)(4)(

3

x
1

1

3
2

2
21 n

n

odd
i

n

even
i

Simp xfxfxfxfI (6.8)

Again, as was the case for the Trapezoidal rule, the second-order Simpson’s rule provides

greater accuracy if the range is broken up into a number of intervals. For the the second-order
Simpson’s rule, the number of intervals, n , must be even because, as you can see in the above plot,
each polynomial fit requires 2 intervals.

 For the same number of intervals, the second-order Simpson’s rule is more accurate than
the trapezoidal rule because we used a high-order polynomial to fit the original function. Because
the second-order Simpson’s rule is second order, the error is proportional to the interval size to the
second power. Halving the size of the interval reduces the error by a factor of four. We postpone
a comparative discussion of the accuracy of various methods until more methods have been
introduced.

A MATLAB code which implements the second-order Simpson’s rule is provided later in this
chapter.

Integration - 91

6.3. Higher Order Simpson’s Rules

The third-order Simpson’s rule uses a third order (cubic) polynomial fit over three intervals to
approximate the integral. The derivation of the method is precisely analogous to that for the
second-order method. We present the result with proof. For a single application (three intervals or
four points), the integral is

 )()(3)(3)(
8

3
4321 xfxfxfxf

x
I Simp 


 (6.9)

If we want to use many intervals, then we need to add up these individual components. We must
also use a number of intervals that is a multiple of 3.












 








)()(2)(3)(3)(

8

x3
1

2

10,7,4
2

9,6,3
2

1

8,5,2
21 n

n

i

n

i

n

i
Simp xfxfxfxfxfI (6.10)

The fourth-order Simpson’s rule uses a fourth order (quartic) polynomial fit over four intervals

to approximate the integral. For a single application (four intervals or five points), the integral is

 )(7)(32)(12)(32)(7
45

2
54321 xfxfxfxfxf

x
I Simp 


 (6.11)

If we want to use many intervals, then we need to add up these individual components. We

must also use a number of intervals that is a multiple of 4.












 












)(7)(14)(32)(12)(32)(7

45

2
1

3

13,9,5
2

12,8,4
2

1

11,7,3
2

2

10,6,2
21 n

n

i

n

i

n

i

n

i
Simp xfxfxfxfxfxf

x
I

 (6.12)

MATLAB codes which implement the third-order and fourth-order Simpson’s rule are

provided later in this chapter.

6.5. Quadrature

Quadrature takes a slightly different approach to the numerical evaluation of integrals.
Quadrature is based on the assumption that we can get a better estimate of the integral with fewer
function evaluations if we use non-equally spaced points at which to evaluate the function. The
determination of these points and the weighting coefficients that correspond to each data point
follows a methodical procedure. We do not derive them here.

Integration - 92

The integral for the nth order Gaussian Quadrature is given by:

  



n

i
iiquad xfcI

1

 (6.13)

The particular values of the weighting constants, c, and the points where we evaluate the function,
x, can be taken from a table in any numerical methods text book.

The advantage of a quadrature technique is that it can be quite accurate for very few function
evaluations. Thus it is much faster and if need to repeatedly evaluate integrals it is the method of
choice. For the evaluation of a couple integrals, the Simpson’s Rules are better because we know
we can increase accuracy by increasing the number of intervals used.

MATLAB codes which implement Gaussian Quadrature for 2nd to 6th order are provided later
in this chapter.

6.6. Example

We want to evaluate the change in entropy of methane for an isothermal expansion or
compression. To describe the thermodynamic state of the fluid, we will rely on tried and true
friend, the van der Waals equation of state.

2V

a

bV

RT
p 


 (4.16)

where P is pressure (Pa), T is temperature (K), V is molar volume (m3/mol), R is the gas
constant (8.314 J/mol/K = 8.314 Pa*m3/mol/K), a is the van der Waal’s attraction constant (.2303
Pa*m6/mol2 for methane) and b is the van der Waal’s repulsion constant (4.306x10-5 m3/mol for
methane). The change in entropy for an isothermal expansion without phase change is











 

dV

T

P
S

V

V V

2

1

The partial derivative of the pressure with respect to temperature at constant molar volume for a
van der Waal’s gas is obtained from differentiating the van der Waals EOS.

bV

R

T

P

V 











so the change in entropy is

Integration - 93




  dV
bV

R
S

V

V

2

1

We can analytically evaluate this integral so as to provide a basis of comparison for the accuracy
of the various numerical techniques. The analytical integral is .













bV

bV
RS

1

2ln

The pressure as a function of

molar volume is shown in Figure
6.4. for van der Waals methane at
298 K. The partial derivative,

VT

P










, as a function of molar

volume is also shown in Figure
6.4. for van der Waals methane at
298 K. The deriviative is the
function we will need to
numerically integrate. in order to
obtain the entropy difference. It is
a smooth, monotonically
decreasing function in our range
of interest.

Let’s expand the gas from
0.03 m3/mol to 0.1 m3/mol. We
compare results using the
analytical solution, and several
numerical methods in Table 6.1.
What is immediately obvious is
that as we increase the number of
intervals for a given order of
method, we see a gradual increase
in accuracy. In quadrature as we
increase the order of the method,
we decrease the error by an order
of magnitude. Also, as we increase the order of a Simpson’s-type method, we see a drastic
increase in accuracy. For example it takes 100,000 intervals in the Trapezoidal rule to equal the
accuracy of 100 intervals in the Simpson’s Fourth Order Method. Quadrature is even more
efficient. A 6-point quadrature equals the accuracy of 1000 trapezoidal intervals in this example.

Figure 6.4. (top) Pressure as a function of molar volume

at 298 K for van der Waals methane. (bottom)
VT

P










 as

a function of molar volume at 298 K for van der Waals
methane.

Integration - 94

Technique # of

intervals
)//(KmolJS percent error

analytical - 10.0182 0.0

Trapezoidal 1 12.62476 2.60E+01
Trapezoidal 2 10.79212 7.73E+00
Trapezoidal 3 10.38034 3.61E+00
Trapezoidal 4 10.22639 2.08E+00
Trapezoidal 10 10.05242 3.42E-01
Trapezoidal 100 10.01854 3.44E-03
Trapezoidal 1000 10.01819 3.44E-05
Trapezoidal 10000 10.01819 3.44E-07
Trapezoidal 100000 10.01819 3.44E-09

Simpson's 2nd Order 2 10.18124 1.63E+00
Simpson's 2nd Order 4 10.03781 1.96E-01
Simpson's 2nd Order 10 10.01892 7.30E-03
Simpson's 2nd Order 100 10.01819 8.17E-07
Simpson's 2nd Order 1000 10.01819 8.18E-11

Simpson’s 3rd Order 3 10.09979 8.14E-01
Simpson’s 3rd Order 6 10.02738 9.18E-02
Simpson’s 3rd Order 9 10.02040 2.21E-02
Simpson’s 3rd Order 99 10.01819 1.91E-06
Simpson’s 3rd Order 999 10.01819 1.85E-10

Simpson’s 4th Order 4 10.02825 1.00E-01
Simpson’s 4th Order 8 10.01869 4.96E-03
Simpson’s 4th Order 100 10.01819 3.39E-09
Simpson’s 4th Order 1000 10.01819 3.55E-14

Quadrature 2nd Order 2 9.91943 9.86E-01
Quadrature 3rd Order 3 10.00942 8.75E-02
Quadrature 4th Order 4 10.01743 7.63E-03
Quadrature 5th Order 5 10.01812 6.61E-04
Quadrature 6th Order 6 10.01819 5.70E-05

quad (MATLAB) ? 10.01828 9.20e-04
quad8 (MATLAB) ? 10.01819 3.36e-08

Table 6.1. Comparison of accuracy of various numerical integration methods.

Integration - 95

6.7. Multidimensional Integrals

Integrals over an area or a volume are not uncommon in science and engineering. The most
conceptually straight forward approach would be to extend the existing one-dimensional
Simpson’s and quadrature methods to multidimensional integrals through sequential application.
Let us examine this application, for the simplest case, which involves the Trapezoidal rule for two-
dimensional integration with fixed limits of integration. This essentially involves integrating a
function over a rectangular area.

A two-dimensional integral with fixed limits of integration can be written as

  
xf

xo

xf

xo

yf

yo

D dxxgdxdyyxfI)(),(2 (6.14)

where the integrand of the outermost integral,)(xg , is

 
yf

yo

dyyxfxg),()((6.15)

This integrand has no dependence on y since that functionality has been integrated out. As a

reminder, the 1-D trapezoidal rule using n intervals (n+1 points) is









 



n

i
i

b

a

xfbfaf
h

dxxf
2

)(2)()(
2

)((6.6)

We apply the trapezoidal rule to the integral over y only first and substitute that into)(xg









 



yn

i
ifo

y
yf

yo

yxfyxfyxf
h

dyyxfxg
2

),(2),(),(
2

),()((6.16)

Substituting the discretized approximation for)(xg in equation (6.16) into equation (6.14)

yields

   











xf

xo

n

i
ifo

y
xf

xo

yf

yo

dxyxfyxfyxf
h

dxdyyxf
y

2

),(2),(),(
2

),((6.17)

Integration - 96

Well, we can repeat the application of the trapezoidal rule:

































































 





 





x y

y

y

n

j

n

i
ijfjoj

y

n

i
ifffof

y

n

i
iofooo

y

x
D

yxfyxfyxf
h

yxfyxfyxf
h

yxfyxfyxf
h

h
I

2 2

2

2

2

),(2),(),(
2

2

),(2),(),(
2

),(2),(),(
2

2
 (6.18)

Now we can simplify this as much as possible,

    





























 



 

 

y x

y x

n

i

n

j
fjojifio

n

i

n

j
ijffoffooo

yx
D

yxfyxfyxfyxf

yxfyxfyxfyxfyxf
hh

I

2 2

2 2

2

),(),(2),(),(2

),(4),(),(),(),(

4
 (6.19)

If we add up the number of function evaluations, we can see that we have   11  yx nn

function evaluations. If nnn yx  , then we have  21n function evaluations for a 2-D integral.

By extension, if we need to evaluate an m-dimensional integral, then we will have  mn 1
function evaluations. In other words, the number of function evaluations scales exponentially with
the dimensionality of the system. By observation we observe that there are four points with a
weighting factor of one corresponding to the four corners of the area. There are four sums with a
weighting factor of two corresponding to the four edges of the area. There is one double sum with
a weighting factor of four corresponding to the interior of the area.

This simple procedure which culminates in the 2-D Trapezoidal rule can be applied to higher
dimensions. For example, the 3-D Trapezoidal rule applied to an integral with fixed limits of
integration yields a corresponding formula. This volume corresponds to a right parallelepiped. By
observation we observe that there are eight points with a weighting factor of one corresponding to
the eight vertices of the volume. There are twelve sums with a weighting factor of two
corresponding to the twelve edges of the volume. There are six double sums with a weighting
factor of four corresponding to the six faces of the volume. There is one triple sum with a
weighting factor of eight corresponding to the interior of the volume.

Integration - 97

 

 

 

 

 

 











































































































































































  

 

 

 







nx

k

n

j

n

i
ijk

nx

k

n

j
fjkojk

nx

k

n

i
ifkiok

n

j

n

i
ijfijo

nx

k
ffkofkfokook

n

j
fjfojffjoojo

n

i
iffiofifoioo

fffofffofoof

ffoofofooooo

zyx
D

y z

y

z

y z

y

z

zyxf

zyxfzyxf

zyxfzyxf

zyxfzyxf

zyxfzyxfzyxfzyxf

zyxfzyxfzyxfzyxf

zyxfzyxfzyxfzyxf

zyxfzyxfzyxfzyxf

zyxfzyxfzyxfzyxf

hhh
I

2 1 2

2 1

2 2

1 2

2

2

2

33

),,(8

),,(),,(

),,(),,(

),,(),,(

4

),,(),,(),,(),,(

),,(),,(),,(),,(

),,(),,(),,(),,(

2

),,(),,(),,(),,(

),,(),,(),,(),,(

2

(6.20)

This is the explicit form of the trapezoidal rule applied in 3-dimensions, when the limits of

integration are constant
This simple procedure which culminates in the multidimensional Trapezoidal rule can be

applied to higher order methods. For example, the two-dimensional Simpon’s second order
method applied to an integral with constant limits of integration can be derived in an analogous
manner and is presented in equation (6.20). The simplified final expression involves terms with
weighting factors of one (the corners of the area), weighting factors of two (odd-numbered nodes
on the edges of the area), weighting factors of four (even-numbered nodes on the edges of the area
and odd-odd double sums in the interior), weighting factors of eight (odd-even double sums in the
interior) and weighting factors of sixteen (even-even double sums in the interior).

For any of these methods, if the boundary of the area over which the integration occurs is not
regular, simple functions like that given in equation (6.19), (6.20) and (6.21) cannot be written.
However, the same concept can still be applied. Integration over y can be performed, generating a
one-dimensional function)(xg , which can then be integrated.

For high dimensional integrals with complicated geometries, completely different methods of
numerical integration are often invoked, including Monte Carlo integration, which randomly
samples the function. Such methods are beyond the scope of this introductory text.

Integration - 98

   

   























































































  

  





















































1

6,4,2

1

6,4,2

2

7,5,3

2

7,5,3

2

7,5,3

1

6,4,2

1

6,4,2

2

7,5,3

1

6,4,2

1

6,4,2

2

7,5,3

2

7,5,3

2

),(16),(4

),(),(8

),(),(),(),(4

),(),(),(),(2

),(),(),(),(

9

x yx y

x yx y

xy

xy

n

j

n

i
ij

n

j

n

i
ij

n

j

n

i
ij

n

j

n

i
ij

n

j
fjoj

n

i
ifio

n

j
fjoj

n

i
ifio

ffoffooo

yx
D

yxfyxf

yxfyxf

yxfyxfyxfyxf

yxfyxfyxfyxf

yxfyxfyxfyxf

hh
I (6.21)

6.8. Subroutine Codes

In this section, we provide a routine for implementing the various numerical integration
methods described above. Note that these codes correspond to the theory and notation exactly as
laid out in this book. These codes do not contain extensive error checking, which would
complicate the coding and defeat their purpose as learning tools. That said, these codes work and
can be used to solve problems.

As before, on the course website, two entirely equivalent versions of this code are provided
and are titled code.m and code_short.m. The short version is presented here. The longer version,
containing instructions and serving more as a learning tool, is not presented here. The numerical
mechanics of the two versions of the code are identical.

Code 6.1. Trapezoidal Rule (trapezoidal_short)

function integral = trapezoidal_short(a,b,nintervals);
dx = (b-a)/nintervals;
npoints = nintervals + 1;
x_vec = [a:dx:b];
integral = funkeval(x_vec(1));
for i = 2:1:nintervals
 integral = integral + 2*funkeval(x_vec(i));
end
integral = integral + funkeval(x_vec(npoints));
integral = 0.5*dx*integral;
fprintf(1,'\nUsing the Trapezoidal method \n');
fprintf(1,'to integrate from %f to %f with %i nintervals,\n',a,b,nintervals);
fprintf(1,'the integral is %e \n \n',integral);

Integration - 99

function f = funkeval(x)
f = x^2 + 5 - sin(x);

An example of using trapezoidal_short is given below.

» integral = trapezoidal_short(0.03,0.1,100);

Using the Trapezoidal method
to integrate from 0.030000 to 0.100000 with 100 nintervals,
the integral is 3.457785e-001

Code 6.2. Simpson’s Second Order Rule (simpson2_short)

function integral = simpson2_short(a,b,nintervals);
if (mod(nintervals,2) ~= 0)
 fprintf('Simpsons 2nd method requires an even number of intervals.\n');
else
 dx = (b-a)/nintervals;
 npoints = nintervals + 1;
 x_vec = [a:dx:b];
 integral_first = funkeval(x_vec(1));
 integral_last = funkeval(x_vec(npoints));
 integral_4 = 0.0;
 for i = 2:2:nintervals
 integral_4 = integral_4 + funkeval(x_vec(i));
 end
 integral_2 = 0.0;
 for i = 3:2:nintervals-1
 integral_2 = integral_2 + funkeval(x_vec(i));
 end
 integral = integral_first + integral_last + 4.0*integral_4 + 2.0*integral_2;
 integral = dx/3*integral;
 fprintf(1,'\nUsing the Simpsons Second Order method \n');
 fprintf(1,'to integrate from %f to %f with %i nintervals,\n',
a,b,nintervals);
 fprintf(1,'the integral is %e \n \n',integral);
end

function f = funkeval(x)
f = x^2 + 5 - sin(x);

An example of using simpson2_short is given below.

» integral = simpson2_short(0.0,1.0,100)

Using the Simpsons Second Order method
to integrate from 0.000000 to 1.000000 with 100 nintervals,
the integral is 4.873636e+000

Integration - 100

Code 6.3. Simpson’s Third Order Rule (simpson3_short)

function integral = simpson3_short(a,b,nintervals);
if (mod(nintervals,3) ~= 0)
 fprintf('Simpsons 3rd Order method requires a # of intervals that is a
multiple of 3.\n');
else
 dx = (b-a)/nintervals;
 npoints = nintervals + 1;
 x_vec = [a:dx:b];
 integral_first = funkeval(x_vec(1));
 integral_last = funkeval(x_vec(npoints));
 integral_3a = 0.0;
 for i = 2:3:nintervals-1
 integral_3a = integral_3a + funkeval(x_vec(i));
 end
 integral_3b = 0.0;
 for i = 3:3:nintervals
 integral_3b = integral_3b + funkeval(x_vec(i));
 end
 integral_2 = 0.0;
 for i = 4:3:nintervals-2
 integral_2 = integral_2 + funkeval(x_vec(i));
 end
 integral = integral_first + integral_last + 3.0*integral_3a ...
 + 3.0*integral_3b + 2.0*integral_2;
 integral = 3.0*dx/8.0*integral;
 fprintf(1,'\nUsing the Simpsons Third Order method \n');
 fprintf(1,'to integrate from %f to %f with %i
nintervals,\n',a,b,nintervals);
 fprintf(1,'the integral is %e \n \n',integral);
end

function f = funkeval(x)
f = x^2 + 5 - sin(x);

An example of using simpson3_short is given below.

» integral = simpson3_short(0.0,1.0,99)

Using the Simpsons Third Order method
to integrate from 0.000000 to 1.000000 with 99 nintervals,
the integral is 4.873636e+000

Code 6.4. Simpson’s Fourth Order Rule (simpson4_short)

function integral = simpson4_short(a,b,nintervals);
if (mod(nintervals,4) ~= 0)
 fprintf('Simpsons 4th Order method requires a # of intervals that is a
multiple of 4.\n');
else

Integration - 101

 dx = (b-a)/nintervals;
 npoints = nintervals + 1;
 x_vec = [a:dx:b];
 integral_first = funkeval(x_vec(1));
 integral_last = funkeval(x_vec(npoints));
 integral_32a = 0.0;
 for i = 2:4:nintervals-2
 integral_32a = integral_32a + funkeval(x_vec(i));
 end
 integral_32b = 0.0;
 for i = 4:4:nintervals
 integral_32b = integral_32b + funkeval(x_vec(i));
 end
 integral_12 = 0.0;
 for i = 3:4:nintervals-1
 integral_12 = integral_12 + funkeval(x_vec(i));
 end
 integral_14 = 0.0;
 for i = 5:4:nintervals-3
 integral_14 = integral_14 + funkeval(x_vec(i));
 end
 integral = 7.0*integral_first + 7.0*integral_last + 32.0*integral_32a ...
 + 32.0*integral_32b + 12.0*integral_12 + 14.0*integral_14;
 integral = 2.0*dx/45.0*integral;
 fprintf(1,'\nUsing the Simpsons Fourth Order method \n');
 fprintf(1,'to integrate from %f to %f with %i
nintervals,\n',a,b,nintervals);
 fprintf(1,'the integral is %e \n \n',integral);
end

function f = funkeval(x)
f = x^2 + 5 - sin(x);

An example of using simpson4_short is given below.

» integral = simpson4_short(0.0,1.0,100)

Using the Simpsons Fourth Order method
to integrate from 0.000000 to 1.000000 with 100 nintervals,
the integral is 4.873636e+000

Code 6.5. Gaussian Quadrature (gaussquad_short)

function integral = gaussquad_short(a,b,norder);
if (norder < 2 | norder > 6)
 fprintf('This code only works for order between 2 and 6\n');
else
 a0 = 0.5*(b+a);
 a1 = 0.5*(b-a);
 if (norder == 2)
 c(1) = 1.0;

Integration - 102

 c(2) = c(1);
 x_table(1) = -0.577350269;
 x_table(2) = -x_table(1);
 elseif (norder == 3)
 c(1) = 0.555555556;
 c(2) = 0.888888889;
 c(3) = c(1);
 x_table(1) = -0.774596669;
 x_table(2) = 0.0;
 x_table(3) = -x_table(1);
 elseif (norder == 4)
 c(1) = 0.347854845;
 c(2) = 0.652145155;
 c(3) = c(2);
 c(4) = c(1);
 x_table(1) = -0.861136312;
 x_table(2) = -0.339981044;
 x_table(3) = -x_table(2);
 x_table(4) = -x_table(1);
 elseif (norder == 5)
 c(1) = 0.236926885;
 c(2) = 0.478628670;
 c(3) = 0.568888889;
 c(4) = c(2);
 c(5) = c(1);
 x_table(1) = -0.906179846;
 x_table(2) = -0.538469310;
 x_table(3) = 0.0;
 x_table(4) = -x_table(2);
 x_table(5) = -x_table(1);
 elseif (norder == 6)
 c(1) = 0.171324492;
 c(2) = 0.360761573;
 c(3) = 0.467913935;
 c(4) = c(3);
 c(5) = c(2);
 c(6) = c(1);
 x_table(1) = -0.932469514;
 x_table(2) = -0.661209386;
 x_table(3) = -0.238619186;
 x_table(4) = -x_table(3);
 x_table(5) = -x_table(2);
 x_table(6) = -x_table(1);
 end
 integral = 0.0;
 for i = 1:1:norder
 x(i) = a0 + a1*x_table(i);
 f(i) = funkeval(x(i));
 integral = integral + c(i)*f(i);
 end
 integral = integral*a1;
 fprintf(1,'\nUsing %i order Gaussian Quadrature \n', norder);
 fprintf(1,'to integrate from %f to %f \n',a,b);

Integration - 103

 fprintf(1,'the integral is %e \n \n',integral);
end

function f = funkeval(x)
R = 8.314;
b = 4.306e-5;
f = R/(x-b);

An example of using guassquad_short is given below.

» integral = gaussquad_short(0.03,0.1,4)

Using 4 order Gaussian Quadrature
to integrate from 0.030000 to 0.100000
the integral is 1.001743e+001

6.9. Problems

Problems are located on course website.

