Summary of basic MATLAB commands for Linear Algebra

Entering a matrix	
$A=[a 11,12 ; a 21, a 22]$	
(commas separate elements in a row, semicolons separate rows) (easiest for direct data entry)	
$\left.\begin{array}{ll} A=[a 11 & a 12 \\ \mathrm{a} 21 & \mathrm{a} 22 \end{array}\right]$	
(tabs separate elements in a (useful for copying data from	rows) Excel)
Entering a column vector $\begin{aligned} & \mathrm{b}=[\mathrm{b} 1 ; \mathrm{b} 2 ; \mathrm{b} 3] \\ & (\mathrm{an} \mathrm{nx} 1 \text { vector }) \end{aligned}$	Entering a row vector $b=[b 1, b 2, b 3]$ (a 1xn vector)
determinant of a matrix $\operatorname{det}(A)$ (scalar)	rank of a matrix rank (A) (scalar)
inverse of an nxn matrix inv (A) (nxn matrix)	transpose of an nxm matrix or an nx1 vector $A=A^{\prime}$ (mxn matrix or 1xn vector)
solution of $A x=b$ $\begin{aligned} & x=A \backslash b \text { or } x=\operatorname{inv}(A) * b \\ & (n x 1 \text { vector }) \end{aligned}$	reduced row echelon form of an nxn matrix rref(A) (nxn matrix)
eigenvalues and eigenvector [w, lambda] =eig (A) (w is an nxn matrix where ea lambda is a nxn matrix wher	nvector, ent is an eigenvalue, off-diagonals are zero).

