Exam III Administered: Wednesday, November 6, 2024 24 points

For each problem part:	0 points if not attempted or no work shown,
	1 point for partial credit, if work is shown,
	2 points for correct numerical value of solution

Problem 1. (16 points)

Consider a set of three first order reactions occurring in a closed pot (a batch reactor) involving compounds, OX, MX and PX.

number	reaction	rate expression	rate constant
1	$OX \rightarrow MX$	$r_1 = k_1 O X$	$k_1 = 7 \ s^{-1}$
2	$MX \rightarrow PX$	$r_2 = k_2 M X$	$k_2 = 9 s^{-1}$
3	$PX \rightarrow OX$	$r_3 = k_3 P X$	$k_3 = 5 s^{-1}$

These equations give rise to the following steady state (at infinite time) mass balances.

compound	rate expression
OX	$0 = k_3 P X - k_1 O X$
MX	$0 = k_1 O X - k_2 M X$
PX	$0 = k_2 M X - k_3 P X$

We also recognize that the sum of the mass fractions equal unity.

$$OX + MX + PX = 1$$

Your goal is to find the steady state composition in this reactor. To do so, answer the following questions.

(a) Are these equations linear or non-linear?

(b) Since you have three unknowns, which three of the four equations should be used to solve for the composition?

- (c) Construct a matrix, \underline{A} , and vector, \underline{b} , from which the compositions, \underline{x} , can be obtained.
- (d) Provide the determinant of the matrix.
- (e) Provide the rank of the matrix, \underline{A} .
- (f) Provide the rank of the augmented matrix, <u>Ab</u>.
- (g) How many solutions will $\underline{Ax} = \underline{b}$ have?
- (h) Provide a solution if it exists.

Problem 2. (8 points)

The longest relaxation time of a polymer can be measured through an auto-correlation function (acf) of the polymer end-to-end distance.

$$acf = c \cdot exp\left(-\frac{t}{\tau}\right) \tag{1}$$

where t is time (sec), τ is relaxation time (sec) and c is a prefactor. The acf is dimensionless.

For the *acf* vs *t* data given in the file, <u>http://utkstair.org/clausius/docs/mse301/data/xm3p02_f24.txt</u>, perform the following tasks. In this data file, the first column is time and the second column contains the values of the acf.

- (a) Identify all variables, y = mx + b, when equation (1) is linearized.
- (b) Report the best value of τ and c.
- (c) Report the standard deviations of τ and c.
- (d) Report the measure of fit.