Exam II Administered: Monday, October 16, 2023 24 points

For each problem part:	0 points if not attempted or no work shown,
	1 point for partial credit, if work is shown,
	2 points for correct numerical value of solution

Problem 1. (16 points) Consider the following data for the critical temperature for two biochemicals.

Acetaldehyde	Ethylene Oxide
C₂H₄O	C₂H₄O

taken from the NIST Chemistry Webbook, http://webbook.nist.gov/chemistry/.

Critical	Temperature	of Acetaldehyde
----------	-------------	-----------------

Temperature (K)	Reference
466	Teja and Anselme, 1990
461	Hollmann, 1903
454.7	Van der Waals, 1881

Critical 7	Femperature	of Ethylene	Oxide
------------	--------------------	-------------	-------

Temperature (K)	Reference
468.9	Walters and Smith, 1952
469	Hess and Tilton, 1950
465.2	Maass and Boomer, 1922

Perform the following tasks.

(a) Determine the sample mean of the critical temperature of acetaldehyde.

(b) Determine the sample mean of the critical temperature of ethylene oxide.

(c) Determine the sample variance of the critical temperature of acetaldehyde.

(d) Determine the sample variance of the critical temperature of ethylene oxide.

(e) Identify the appropriate distribution to describe the difference of means in this case?

(f) Determine the lower limit of a 80% confidence interval on the difference of means of the critical temperature.

(g) Determine the upper limit of a 80% confidence interval on the difference of means of the critical temperature.

(h) Explain your findings in language a non-statistician can understand.

(exam continued on next page)

Problem 2. (8 points)

Consider a 6-cylinder automobile engine with six spark plugs, each with a lifetime that follows the normal distribution with a mean lifetime of 50,000 miles and a standard deviation of 2,000 miles.

- (a) What is the probability that a sparkplug lasts at least 45,000 miles?
- (b) What is the probability that all six sparkplugs last at least 45,000 miles?
- (c) What is the probability that a sparkplug dies before 45,000 miles?
- (d) What is the probability that no more than half the sparkplugs have died by 45,000 miles?