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Lecture Outline

● Review:  Obtaining Diffusivities in Molecular Dynamics Simulation
● Mesoscale Models:  Confined Random Walk Simulations
● Percolation Theory
● Analytical Theory – Applications to Water and Charge
○ Acidity
○ Confinement○ Confinement
○ Connectivity



Proton Transport in Bulk Water and PEM
Experimental Measurements

Robison R A ; Stokes R H Electrolyte Solutions; 1959Robison, R. A.; Stokes, R. H. Electrolyte Solutions; 1959.

Nafion (EW=1100) Kreuer, K. D. Solid State Ionics 1997.

Even at saturation,  the self-diffusivity of charge in Nafion is 22% of that in bulk water.



Diffusivities from MD Simulation
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But for simulation in 
PEMs, we can’t reach 
the long-time limit 
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required by Einstein 
relation.

MD simulations alone
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MD simulations alone
are not long enough.

MSDs don’t reach the long-time (linear) regime.
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Confined Random Walk Simulation

Mesoscale Model
● non-interacting point particles (no energies, no forces)
● sample velocities from a Maxwell-Boltzmann distribution  M
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● sample velocities from a Maxwell Boltzmann distribution
● two parameters
○ cage size
○ cage-to-cage hopping probability
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● parameters fit to MSD from Molecular Dynamics Simulation
● runs on a laptop in a few minutes
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Confined Random Walk Simulation

I t f t h i b bilitImpact of cage-to-cage hopping probability 

Low cage-to-cage hoppingLow cage to cage hopping 
probability slows diffusion but 
doesn’t eliminate the Einstein 
infinite-time limit linear behavior.

Calvo-Muñoz, E.M., Esai Selvan, M., Xiong, R., Ojha, M., Keffer, 
D.J., Nicholson, D.M., Egami, T”, Phys. Rev. E, 83(1) 2011 article 
# 011120.



Confined Random Walk Simulation

I t f iImpact of cage size

Small cage size reduces the 
diffusivity.

Calvo-Muñoz, E.M., Esai Selvan, M., Xiong, R., Ojha, M., Keffer, 
D.J., Nicholson, D.M., Egami, T”, Phys. Rev. E, 83(1) 2011 article 
# 011120.



Couple MD Simulations with 
Confined Random WalkTheory
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● Fit MD results (1 ns) to Confined Random Walk (CRW) Theory
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● Fit MD results (1 ns)  to Confined Random Walk (CRW) Theory.
● Extend Mean Square Displacement to long-time limit (100 ns).
● Extract water diffusivity.



Comparison of MD/CRW Simulation 
with Experiment
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● Can we predict the self-diffusivity of water without computationally 
expensive simulations?



Confined Random Walk Simulation

Combined MD simulations and Confined Random Walk simulations do not only 
yield the effective diffusivity of the system, but they also yield intrinsic 
diffusivities of the unconfined system, Do, and the cage size, Rcage., and the 
probability of a successful cage-to-cage hop pprobability of a successful cage to cage hop, pcage.

We will use the intrinsic diffusivities of the unconfined system D in anWe will use the intrinsic diffusivities of the unconfined system, Do, in an 
analytical theory of diffusion in hydrated PEMs.

Calvo-Muñoz, E.M., Esai Selvan, M., Xiong, R., Ojha, M., Keffer, 
D.J., Nicholson, D.M., Egami, T”, Phys. Rev. E, 83(1) 2011 article 
# 011120.



Th F t A idit C fi t & C ti it

Analytical Theory

Three Factors:  Acidity, Confinement & Connectivity

bulk water water in PFSA membranes

(N fi EW 1144)
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● H3O+ concentration is dilute H3O+ concentration
● =3 H2O/HSO3, pH ≈ -0.59

(Nafion EW=1144)

 5 6 108 H O/H+ ( H 7)

ac
id  3 H2O/HSO3, pH  0.59  

(minimally hydrated)
● =22, pH≈-0.22 (saturated) 
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● interfacial surface area is 
zero

interfacial surface area
● 163 Å2/H2O or 2460 m2/g 
(=3)
● 23 Å2/H O or 1950 m2/g
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● no connectivity issues domain deteriorates as water 
content decreases



Water Mobility in Bulk Systems – Effect of Connectivity

Percolation Theory

Water Mobility in Bulk Systems Effect of Connectivity

Invoke Percolation Theory to account for 
connectivity of aqueous domain within PEM
and obtain effective diffusivityand obtain effective diffusivity. 
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Percolation theory relates the effective diffusivity to the fraction of bonds 
that are blocked to diffusion.

no blocked bonds
D = Dopen

some blocked bonds
0 < D < Dopen

beyond threshold
D = 0



Percolation Theory

This percolation theory has four variables

Do = diffusivity through an open pore 
(or D of the unconfined system)
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(or D of the unconfined system) 

Db = diffusivity through a blocked pore      oEMAbEMA DDpDDpDg   1)(

2 

z = connectivity of the porous network

pEMA = probability of a pore is blocked 

It has an analytical solution
for the effective diffusivity,
Deff



Percolation Theory

Do = diffusivity of the unconfined system

Determined from empirical fits to experimental and simulation data as a 
function of acidity and confinementfunction of acidity and confinement.
The acidity data is experimental data from bulk HCl solutions.
The confinement data is simulated data for water in model carbon nanotubes.
The fits are exponential.

       SAkckSAcDSAcD OHSAOHcoo 22 ,, expexp0,0, 

where c is concentration of hydronium ions and SA is surface area per water 
molecule.

is the diffusivity of bulk water. 0,0  SAcDo



Water Mobility in Bulk HCl solutions –
Effect of Acidity
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● In bulk systems, the diffusivity of water decreases as the concentration 
of HCl increases.
● The behavior is well fit by an exponential fit.



Water Mobility in Nanotubes –
Effect of Confinement
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● In carbon nanotubes, the diffusivity of water decreases as the radius of 
the nanotube decreases.
● The behavior is fit by an exponential fit.



Percolation Theory

Db = diffusivity through a the blocked pore 

   SAcDpSAcD ocageb ,, 

where pcage is the cage-to-cage hopping probability obtained when fitting the 
confined random walk theory to the mean square displacements from MD 

g

y
simulations of water diffusion in Nafion.

It turns out that, in this case, the remaining two parameters for the percolation 
theory z and p are not independent We fit this remaining parameter totheory, z and pEMA, are not independent.  We fit this remaining parameter to 
the effective diffusivities obtained from the MD/CRW simulations.

Result is shown on the next page.



Structure Based Analytical Prediction of Self diffusivity

Analytical Theory

Structure-Based Analytical Prediction of Self-diffusivity

● Acidity – characterized by concentration of H3O+ in aqueous domain
(exponential fit of HCl data)

● Confinement – characterized by interfacial surface area
(exponential fit of carbon nanotube data)

● Connectivity – characterized by percolation theory
(fit theory to MD/CRW water diffusivity in PEMs)ys
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What about Proton Transport?

Analytical Theory

What about Proton Transport?

We have shown thus far that we can model the transport of water fairly 
accurately using either

1.  detailed MD/CRW simulation (months on a supercomputer)
2.  analytical model based on acidity, confinement & connectivity 

(minutes on a laptop computer)( u es o a ap op co pu e )

We now want to repeat this process for protons.  After all, it is the 
transport of protons that completes the electrical circuit in a fuel cell.

Why did we start with water?

Diffusion of water is easier to describe.  

Water is transported only via vehicular diffusion (changes in the center of 
f )mass of the water molecules).

There are two mechanisms for proton transport.



Proton Transport – Two Mechanisms

Vehicular diffusion:  change in position of center of mass of hydronium
ion (H3O+)

H

O of 
H3O+

translation

Structural diffusion (proton shuttling):  passing of protons from water 
molecule to the next  (a chemical reaction involving the breaking of a 
covalent bond)covalent bond)

O of 
H2O

proton

1 2 1 23 3
p
hops

In bulk water, structural diffusivity is about 70% of total diffusivity.



Bulk HCl Solution:  
Effect of Acidity in an Analytical Fit
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• Two assumptions (validated by RMD) for structural and vehicular components
• Decline in diffusivity due to pH is in the structural component
• Structural and diffusive components remain uncorrelated



Nanotubes:  
Effect of Confinement in an Analytical Fit
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• Decline in diffusivity due to confinement is in the structural component
• Structural and diffusive components remain uncorrelated



Percolation Theory:  
Effect of Connectivity

This percolation theory has four variables

D = diffusivity through an open pore

Obtained from 
exponential fit to Do = diffusivity through an open pore 

(or D of the unconfined system) 

p
experimental and 
simulated data for bulk 
HCl solutions and carbon 
nanotubes (last twonanotubes (last two 
slides).

Db = diffusivity through a blocked pore 

z = connectivity of the porous network

Use the same 
parameters as for water, 
Since the structure of the 
aqueous domain through

pEMA = probability of a pore is blocked 

aqueous domain through 
which both water and 
charge transport occurs 
is the same. 



Structure-Based Analytical Prediction 
of Self-diffusivity of Charge

● Acidity – characterized by concentration of H3O+ in aqueous domain
(exponential fit of HCl data)

● Confinement – characterized by interfacial surface area
( ti l fit f b t b d t )(exponential fit of carbon nanotube data)

● Connectivity – characterized by percolation theory
(fit theory to MD/CRW water diffusivity in PEMs)
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Conclusions

Reactive Molecular Dynamics simulations were used to model 
water and proton transport in four systems:
● bulk water ● water in carbon nanotubesbulk water water in carbon nanotubes
● bulk HCl sol’n ● hydrated Nafion

MD simulations & Confined Random Walk theory 
● yield water self-diffusivities in excellent agreement with expt

An analytical model incorporating
● acidity (concentration of H3O+ in aqueous domain)
● confinement (interfacial surface area per H2O)
● connectivity (percolation theory based on H2O transport)
is capable of quantitatively capturing the self diffusivity of bothis capable of quantitatively capturing the self-diffusivity of both 
water and charge as a function of water content

Future Work: Apply this approach to other systems with novelFuture Work:  Apply this approach to other systems with novel 
nanostructures.
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