
ChE 548 
Final Exam 
May 2, 2008 

 
Problem 1. 
Consider the steady state behavior of a three component fluid located in an isothermal and 
isobaric system between two boundaries.  The thermodynamic state of the boundary at z = 0 is 
defined by the mole fraction of 1, x1 = 0.25, mole fraction of 2, x2 = 0.74, temperature T = 300 
K, and pressure p = 1 bar. The thermodynamic state of the boundary at z = 1 m is defined by the 
mole fraction of 1, x1 = 0.2, mole fraction of 3, w3 = 0.79, temperature T = 300 K, and pressure p 
= 1 bar. 
 
The chemical potential of component i in a multicomponent van der Waals gas is given by 
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where kB is Boltzmann’s constant, Vm is the molar volume, Li is the thermal de Broglie 
wavelength.  For this example, we will set all of the van der Waal b parameters (all bi and bmix) 
to zero.  The values of a are as follows:  a11 = a22 = a33 = a13 = a23= a31 = a32 = 0, a12 = a21 = 20 
Joules-m3/mole.  Consider the molar volume to be constant at Vm = 2.5x10-2 m3/mole.   
 
Tasks. 
(a) Using a finite difference formula, determine the average mole fraction gradients for each 
component, based on the boundary values. 
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(b)  Based on the sign of the mole fraction gradients, in which direction would you expect the 
diffusive flux of each species to be? 
 One would expect that species diffuse from high mole fraction to low mole fraction. 
 Component 1 would move to the boundary at z = 1. 
 Component 2 would move to the boundary at z = 1. 
 Component 3 would move to the boundary at z = 0. 
 
(c)  Using a finite difference formula, determine the average chemical potential gradients for 
each component, based on the boundary values. 
 



The chemical potential expressions are 
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The average chemical potential gradients are 
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Numerical evaluation yields 
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(d)  Based on the sign of the chemical potential gradients, in which direction would you expect 
the diffusive flux of each species to be? 
 One would expect that species diffuse from high chemical potential to low chemical 
potential. 
 Component 1 would move to the boundary at z = 0. 
 Component 2 would move to the boundary at z = 1. 
 Component 3 would move to the boundary at z = 0. 
 
(e)  Based on your conclusions in parts (b) and (d), which fluxes will one actually observe, those 
given in part (b) or part (d)?  Why? 
 
One will observe the fluxes predicted in part (d), because part (d) is based on the thermodynamic 
driving force for diffusion.  Following the chemical potential gradient will lead the system to a 
lower free energy.  Here, because component 1 interacts more favorably with component 2 than 
it does with component 3, the advantage of the energetic driving force outweighs the 
disadvantage of the entropic driving force associated with going up a concentration gradient. 
 
(f)  What is the common term given to the transport phenomena exhibited by one of the 
components? 
 
Component one will display “uphill diffusion”, where it diffuses up the concentration gradient. 
 
(g)  Name a  chemical engineering unit operation in which this transport phenomena is 
frequently exploited. 
 
In liquid-liquid extraction, a good solvent is used to extract a solute from a less good solvent.  
The goodness of a solvent is really an indicator of the chemical potential of the solute in that 
solvent.  Thus, one can extract a solute to a higher concentration in the good solvent than was 
originally present in the less good solvent, due to the overall reduction in free energy. 
 
Problem 2. 
 
Consider the driving force for mass flux given in equation (24.1-8) of BSL2 on page 766 and the 
flux law given in equation (24.2-3) on page 767.  Further consider an isothermal, isobaric system 
in the absence of external forces.  Note that the diffusivities that appear in (24.2-3) are symmetric 

βααβ DD =  and satisfy the constraints 0=∑ αβ
α

α Dw .   

 
(a)  How many independent diffusivities are there for a ternary system? 
(b) For a ternary system, express the off-diagonal elements of the diffusivity as a function of the 
diagonal components. 
 
First, we write out the constraints that the weighted diffusivities sum to zero. 
 

0=++ ACCABBAAA DwDwDw        (6.1) 
 



0=++ BCCBBBBAA DwDwDw        (6.2) 
 

0=++ CCCCBBCAA DwDwDw        (6.3) 
 
Using the symmetry relations, we have 

 
0=++ ACCABBAAA DwDwDw        (7.1) 

 
0=++ BCCBBBABA DwDwDw        (7.2) 

 
0=++ CCCBCBACA DwDwDw        (7.3) 

 
Solving for off-diagonal components in terms of the diagonal components, we have 
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Solving equation (5) for the remaining off-diagonal elements, we have 
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(c) In this formulation, if the diagonal components are constants with respect to composition, are 
the off-diagonal components also constant with respect to composition. 
 
No, clearly the off-diagonal components are functions of composition. 
 
(d)  Consider a ternary system, free of convection at steady state, where the diffusive fluxes are 
constant.  Express each flux in terms of the minimum number of independent driving forces.  For 



simplicity, you may assume that the fluid is an ideal mixture where the activity of component i is 
equal to the mole fraction of component i.   
 
The constitutive equations come from equation (24.2-3) and equation (24.1-8) 
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If the system is ideal, 
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Because the sum of the mole fractions is unity,  we have 
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Grouping the two driving forces yields, 
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where the off-diagonal elements have been previously defined. 
 
Problem 3. 
Consider the following composition balance 
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where the diffusive mass flux of component A relative to the center of mass velocity is defined 
as 



 
 ⋅∇−= AA wDρj   ,         (15) 
 
and there is one chemical reaction in the system (NR = 1) with a rate given by 
 
 AA kr ρ−=   ,          (16) 
 
Put this equation in dimensionless form.  Identify all dimensionless numbers. 
 
First, substitute equations (15) and (16) into equation (14). 
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define a dimensionless time, mass and length unit. 
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 tk=τ   ,          (18.c) 
 
Substitute equation (18) into equation (17) 
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Simplify. 
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Expand derivative.  Make no assumptions about density or diffusivity being constant, 
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Introduce dimensionless numbers: 
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 2kL
DB =   , the ratio of diffusion to reaction     (22.2) 

 
Note that B may not be constant if D varies. 
 
The equation becomes 
 

 AAAAA
A wBwwBwBww

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅∇+∇⋅∇+∇⋅∇+∇⋅−=

∂
∂ ∗

∗ ζζζζζζζ ρ
ρτ

A    (23) 

 


