D. Keffer, Department of Chemical Engineering, University of Tennessee

ChE 548
Final Exam
Spring, 2004

Problem 1.

Consider a single-component, incompressible fluid moving down an uninsulated funnel. Derive
the energy balance for this system. Show all work involved in each step of the derivation.
Express the energy balance in such a form that the left-hand-side contains only the time
derivative of the temperature. State any assumptions that you make. Introduce variables such as
the density, heat capacity, thermal conductivity, etc as necessary. The fact that the fluid is
incompressible can be expressed by making the velocity a function of axial position; do so.
Assume the surroundings are hotter than the fluid inside the funnel. Qualitatively sketch the
steady state profile for two values of the heat transfer coefficient, zero (insulated) and non-zero
for your boundary conditions. For the insulated case, one can obtain an analytical solution for
the steady state profile. Time permitting, obtain it.
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Problem 1. Solution:

mass balance:

% =0 for incompressible fluid.
density is constant.
enthalpy

assume constant heat capacity
assume heat capacity is given on a per mass basis

.
H= [CpdT =Cp(T~Trer)
Tref

length of funnel = L

diameter of the reactor

DR('—)—DR(O)Z
L

Dr(z)=Dg(0)+

cross-sectional area

A(0)= EDg(eF = dg(0)+ Pl Lal0),

for an incompressible fluid, the volumetric flowrate is constant
F =constant = v(z)A,(z)

Therefore, the velocity as a function of position is

volume element
assume no variation in radial or angular dimensions

AV = A, Az
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energy balance

acc = A\lépH

conv = pvHA, |, —pvHA,|

Z+AZ

cond =gA,|, —aA|,, .,

loss = -A h( Tsurr ) =—AznDgr (Z)h( surr)

where T IS the temperature of the surroundings and h is the heat transfer coefficient.
AVpH=pvHA | —pvHAL| . +dAL|, —dA,], . , —AZrDR(Zh(T - Ty )

divide by incremental volume

opH _ 1 [vaAxh-—vaAxL+Az}+ 1 {qAxb-—qAxL+Az}_ 4
AX

h(T-T
ot Ay Az Az Dr(2) (T~Teur )

take limit as Az goes to zero.

opH 1 [opvHA,] 1 [dgAc] 4
AX

= h(T-T.
ot Al oz oz | Dgrlz) (T~Teurr)

insert Fourier’s Law

opH _ 1[&wHAx]%1 {5@<A GTH__:LSMT—Twn)

ot Ay 0z oz\ ¢ " oz Dgr(z

eliminate the enthalpy in favor of the temperature

opH oT
C
o TP
OpVHA oH OvVA, oT OVA
X —plVA, —+H Co| VA, —+(T-T
0z p{ X oz 0z } P [ X oz ( ef) 0z }

assume constant thermal conductivity.
use the fact that we have an expression for the velocity as a function fo axial position.
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OpVHA =pCpFﬂ

0z 0z

2
k
Pcp8—-'-:—PCpVa_T"'kca T+ c Ay __4 h(T - Tsurr)
ot 0z 022 Ay 6z oz Dgl(z)

divide by pC,
oT oT  3°T  aTdlnAy 4

- =V — -

h(T-T
ot 0z 72 0z oz pCpDR(Z)( surr)

where a is the thermal diffusivity

2
0InAy _ 1 oA, _ 1 QEKDR(O)JFDR(L)—DR(O)ZJ
oz Ay 0z Ayo0z4 L

L2 5}, 261-0a(0), 102 022 0

X L
P Dr(L)-Dr(0) _,Dr(L)-Dr(0)

L(DR(O)+ DR(L)[DR(O) zj LDR(2)
8—T=—V8—T+0,82—T 8—T2DR(L)_DR(O) 4 h(T - Tsurr)

a - o Y2 %" ol pCoDRE)

This is the evolution equation for temperature.
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Now, let’s solve for the steady state profile for the insulated case, where h=0.

Case A. The temperature and the temperature gradient at z=0 are known.

F_or,  o°T  aT,Dg(L)-Dgr(0)

S Al
0 A (z) 6z T2 % LDg(2) (AD
2
0= 2aDR(L)_DR(O)— I L (A.2)
LDr(z)  Ax(z))oz oz2
2
0—|2,PrL)-DrO) _ 4F Tl (A3)
LDr(z)  wDRr(z)? )02 oz
let u= a (A.4)
0z
0=|2a Dr(L)-Dr(0) _ 4F urad (A.5)
LDr(2)  wDg(z)?) 2
This ODE is of the form:
a(z)u+ au =0 (A.6)
0z

where a(z) =2 Dr(L)-Dr(0)  4F (A7)

LDr(z)  axDg(z)?

This ODE has the solution:

u(z)= u(zo)exp{ j a(z)dzJ (A.8)
Zg
Dr(z)=Dg(0)+ Dr (L)[ DR(O)z (A.9)
= dDg(z)=dz (A.10)

DR(L)-Dr(0)
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Ta(z)dz: T [2 Dr(L)-Dr(0)___ 4F }dz

. ;L R anDg ()

R Pr)-DR0)__ aF ] Z
_ Rj(o)_z LDr(2) anDR(Z)Z}DR(L)_DR(O)dDR()

R 2 L 4F
- DR<z>DR<L>DR<o>anDR<z>z}dDR<Z)

(A.11)

zj+ L f( 1 1
(0)) Dgr(L)-Dgr(0)ar|Dg(z) Dgr(0)

u(z)= U(Zo)eXp(_ 2'”(328) - DR(L)EDR (o)g DRl(Z) ) DRl(O)D

<>EB—?’§JPE DR<L>EDR<0>%(DR1<2>’DR1<0>D

ZZO[DR(O)

(A.12)

ar _ a1
0z 0z

DR (z)j2 eXp(_ DR (L)E DR (o)g[.):(z) B DRl(o)B (A13)

integrate again:
T(2) z

ar= [T
T(IO) zjo o

DR(z)j2 exp{_ DR(L)E DR(o)g(DRl(z) ) DRI(O)DO'Z (A14)

ZZO[DR(O)

z

T(@)=TO)+ | % R

Z90

Dr(z)

T(z)=T(0)+ a

O DR<L>5DR<0>D?O)(B§8JZ p[ RN o DR1<0>D"DR(Z)

(A.16)
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This integral is of the form:
X
I 1 exp(a + b]dx
x?2 X
Xo

Use the substitution u=1/x and we have

u
qu exp(au + b)dx

Uo

This integral can be evaluated analytically to yield

u u
J.u2 exp(au +b)dx = exp(b){exp(au{u2 U, 2 ﬂ

a az
Ug o
So for our case
yo 1
Dr(2)
b= = *_1
DR(L)— DR(O) olTT DR (0)
a=-— L f
~ Dgr(L)-Dgr(0)an
So we have
s ~ a 1 1 2 ’
Ju exolau - ex"(b{ex"[m(zﬂ[m(z)z “a0ele) a2 ﬂ
T(z)=
oT LD (0)2 a 1 1 2 DRr(z)
T(0)+ < 3 b B 2
O+, Drl)-Dr@) ™ {ex"(oa@ﬂ[%(z)z aDr(2) ﬂ()

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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This solution assumes that we know the temperature and the temperature gradient at the inlet of
the funnel. We could also work the problem out where our constants of integration are
determined by a temperature at each boundary.

There you have the analytical solution.
Let’s make a couple plots of the analytical solution.
First, we write a quick little Matlab code to evaluate the solution.
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clear all;
close all;
nzint = 100;
nzp = nzint + 1;
T = zeros(1,nzp);
z = zeros(1,nzp);
L=1;
20 =0;
zZf=zo+L;
dz = L/nzint;
Cp=1;
Dro =1,
DrL =2;
Ds = (DrL - Dro)/L;
F=1;
rho =1,
kc=1;
alpha = kc/(rho*Cp);
dTdzo =1;
To =300;
a = -4*F/(alpha*pi*Ds);
b = 4*F/(alpha*pi*Ds*Dro);
expb = exp(b);
terml = exp(a/Dro)*(1/Dro”2 - 2/(a*Dro) + 2/a"2);
fori=1:1:nzp
z(i) = (i-1)*dz + zo;
Dr = Dro + Ds*z(i);
AX = pi/4*Dr*Dr;
v = F/IAX;
term2 = exp(a/Dr)*(1/Dr"2 - 2/(a*Dr) + 2/a"2);
T(i) = To + dTdzo*Dro”2/Ds*expb*(term2 - terml);
end
plot(z,T);
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Plot for base case:

3':":'.5 1 1 1 1 1 1 1 1 1
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plot for base case except we increase the volumetric flowrate to F =10
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plot for base case except we increase the thermal conductivity to kc = 10
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Case B. The temperature at z=0 and the temperature at z=L are known.

Equations (A.1) to (A.12) remain the same. Equation (A.12) can be rewritten in terms of a
general unknown constant of integration.

s-w ] {5, smen o 5.01) (A1
o0=45.7) 5.0 0700 0.0 &1
-l A s melo) o
egrte agin

for- o) ol 50 Bwrer o) o
1070+ [{55) -5 s 06 o

1@-10+ | {5a] {0 50 0.0 5.0

D (0)

0.2 , (B.16)
L ) 1 L 4F (1
=T(0)+c ( J exp[— —[ DdD (2)
5.0 5: 01 0. D) Dy @ e D20
This integral is of the form:
1
[= exp(a + bjdx (A.17)
x? X
Xo
Use the substitution u=1/x and we have
u
juz exp(au + b)dx (A.18)

Uo

13
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This integral can be evaluated analytically to yield

u u

juz exp(au +b)dx = exp(b){exp(au{u2 - 22 + ZZH (A.19)
a

Ug Uo

So for our case

1
" BR@) (420
b=0 (B.21)
___ L 4 A.22
" 5a) B0 o A

So we have

t _ a 1 1 2| |

ufau exp(au +b)dx = l:exp( b, (Z)J( X% 2 aD. (z)+ " Hu (B.23)
L a 1 v 2"

T=TO 5 1) 5,0) [exp(DR<z>J(DR(z>z 2 aDR<z>+a2HDR(O) (B2

Finally, we evaluate the unknown constant c, by forcing it to satisfy the second boundary
condition

Dg(z=L)
L a 1 1 2
He=b=TOes - m(o)[ex"(m(z)}(m(z)z . aDR<z>+a2JL 0 .
_ T(Z=L)—T(0) (826)
L ex{ a} 1, 1 2 ot
D,(L)-0,0) "\ 2 @)\ D, ef " aDi(2) "a? )|,

There you have the analytical solution.
Let’s make a couple plots of the analytical solution.
First, we write a quick little Matlab code to evaluate the solution.

14
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clear all;

close all;

nzint = 100;

nzp = nzint + 1;
T = zeros(1,nzp);
z = zeros(1,nzp);

L=1,

z0=0;

zf=zo+L;

dz = L/nzint;
Cp=1;

Dro=1;

DrL =2;

Ds = (DrL - Dro)/L;
F=1;

rho = 1;

kc=1;

alpha = kc/(rho*Cp);
To =300;

TL =400;

a = -4*F/(alpha*pi*Ds);
terml = exp(a/Dro)*(1/Dro”2 - 2/(a*Dro) + 2/a"2);
term3 = exp(a/DrL)*(1/DrL"2 - 2/(a*DrL) + 2/a"2);
¢ = (TL-To)*Ds/(term3-term1l);
fori=1:1:nzp
z(i) = (i-1)*dz + zo;
Dr = Dro + Ds*z(i);
term2 = exp(a/Dr)*(1/Dr"2 - 2/(a*Dr) + 2/a"2);
T(i) = To + ¢/Ds*(term2 - term1);
end
plot(z,T);
dTdz_zo = c¢/Dro”™2*exp(a/Dro)

15
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base case F=1 and kc=1
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F=1 and kc=10
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F=10 and kc=1
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For the case where the heat transfer coefficient is non-zero, the ODE is more difficult to solve
analytically. The coefficients of the terms are functions of axial position, z. | am pretty sure that
an analytical solution does exist, but | haven’t derived it myself.

Anyway, the problem doesn’t ask for an analytical derivation, only a sketch. So, once you have
established what the insulated case should look like, then you have to modify that to account for
heat loss. The heat loss will be greater at the wider end of the funnel so the difference between
the insulated an uninsulated cases out to be greater at the wider end of the funnel. Seeing as we
are on page 19 of the solutions, | am going to leave it at that.

19



