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ChE 548 
Final Exam 
Spring, 2004 

 
Problem 1. 
Consider a single-component, incompressible fluid moving down an uninsulated funnel.  Derive 
the energy balance for this system.  Show all work involved in each step of the derivation.  
Express the energy balance in such a form that the left-hand-side contains only the time 
derivative of the temperature.  State any assumptions that you make.  Introduce variables such as 
the density, heat capacity, thermal conductivity, etc as necessary.  The fact that the fluid is 
incompressible can be expressed by making the velocity a function of axial position; do so.  
Assume the surroundings are hotter than the fluid inside the funnel.  Qualitatively sketch the 
steady state profile for two values of the heat transfer coefficient, zero (insulated) and non-zero 
for your boundary conditions.  For the insulated case, one can obtain an analytical solution for 
the steady state profile.  Time permitting, obtain it. 
 



D. Keffer, Department of Chemical Engineering, University of Tennessee 

 2

Problem 1. Solution: 
 
 
mass balance: 
 

 0
t
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∂
ρ∂  for incompressible fluid. 

 
density is constant. 
 
enthalpy  
 assume constant heat capacity 
 assume heat capacity is given on a per mass basis 
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for an incompressible fluid, the volumetric flowrate is constant 
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Therefore, the velocity as a function of position is 
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volume element 
 assume no variation in radial or angular dimensions 
 
 zAV x∆=∆  
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energy balance 
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where Tsurr is the temperature of the surroundings and h is the heat transfer coefficient. 
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divide by incremental volume 
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take limit as ∆z goes to zero. 
 

( ) ( )surr
R

x

x

x

x
TTh

zD
4

z
qA

A
1

z
vHA

A
1

t
H

−−⎥⎦

⎤
⎢⎣

⎡
∂

∂
−⎥⎦

⎤
⎢⎣

⎡
∂

ρ∂
−=

∂
ρ∂  

 
insert Fourier’s Law 
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eliminate the enthalpy in favor of the temperature 
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assume constant thermal conductivity. 
use the fact that we have an expression for the velocity as a function fo axial position. 
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divide by ρCp 
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where α is the thermal diffusivity 
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This is the evolution equation for temperature. 
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Now, let’s solve for the steady state profile for the insulated case, where h=0. 
 
Case A.  The temperature and the temperature gradient at z=0 are known. 
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This ODE is of the form: 
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This ODE has the solution: 
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integrate again: 
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This integral is of the form: 
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Use the substitution u=1/x and we have 
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This solution assumes that we know the temperature and the temperature gradient at the inlet of 
the funnel.  We could also work the problem out where our constants of integration are 
determined by a temperature at each boundary. 
 
There you have the analytical solution. 
Let’s make a couple plots of the analytical solution. 
First, we write a quick little Matlab code to evaluate the solution. 
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clear all; 
close all; 
nzint = 100; 
nzp = nzint + 1; 
T = zeros(1,nzp); 
z = zeros(1,nzp); 
L = 1; 
zo = 0; 
zf = zo + L; 
dz = L/nzint; 
Cp = 1; 
Dro = 1; 
DrL = 2; 
Ds = (DrL - Dro)/L; 
F = 1; 
rho = 1; 
kc = 1; 
alpha = kc/(rho*Cp); 
dTdzo = 1; 
To = 300; 
a = -4*F/(alpha*pi*Ds); 
b = 4*F/(alpha*pi*Ds*Dro); 
expb = exp(b); 
term1 = exp(a/Dro)*(1/Dro^2 - 2/(a*Dro) + 2/a^2); 
for i = 1:1:nzp 
    z(i) = (i-1)*dz + zo; 
    Dr = Dro + Ds*z(i); 
    Ax = pi/4*Dr*Dr; 
    v = F/Ax; 
    term2 = exp(a/Dr)*(1/Dr^2 - 2/(a*Dr) + 2/a^2); 
    T(i) = To + dTdzo*Dro^2/Ds*expb*(term2 - term1); 
end 
plot(z,T); 
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Plot for base case: 
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plot for base case except we increase the volumetric flowrate  to F = 10 
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plot for base case except we increase the thermal conductivity to kc = 10 
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Case B.  The temperature at z=0 and the temperature at z=L are known. 
 
Equations (A.1) to (A.12) remain the same.  Equation (A.12) can be rewritten in terms of a 
general unknown constant of integration. 
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integrate again: 
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This integral can be evaluated analytically to yield 
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So we have 
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Finally, we evaluate the unknown constant c, by forcing it to satisfy the second boundary 
condition 
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There you have the analytical solution. 
Let’s make a couple plots of the analytical solution. 
First, we write a quick little Matlab code to evaluate the solution. 
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clear all; 
close all; 
nzint = 100; 
nzp = nzint + 1; 
T = zeros(1,nzp); 
z = zeros(1,nzp); 
L = 1; 
zo = 0; 
zf = zo + L; 
dz = L/nzint; 
Cp = 1; 
Dro = 1; 
DrL = 2; 
Ds = (DrL - Dro)/L; 
F = 1; 
rho = 1; 
kc = 1; 
alpha = kc/(rho*Cp); 
To = 300; 
TL = 400; 
a = -4*F/(alpha*pi*Ds); 
term1 = exp(a/Dro)*(1/Dro^2 - 2/(a*Dro) + 2/a^2); 
term3 = exp(a/DrL)*(1/DrL^2 - 2/(a*DrL) + 2/a^2); 
c = (TL-To)*Ds/(term3-term1); 
for i = 1:1:nzp 
    z(i) = (i-1)*dz + zo; 
    Dr = Dro + Ds*z(i); 
    term2 = exp(a/Dr)*(1/Dr^2 - 2/(a*Dr) + 2/a^2); 
    T(i) = To + c/Ds*(term2 - term1); 
end 
plot(z,T); 
dTdz_zo = c/Dro^2*exp(a/Dro) 
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base case F=1 and kc=1 
 
 

 



D. Keffer, Department of Chemical Engineering, University of Tennessee 

 17

F=1 and kc=10 
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F=10 and kc=1 
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For the case where the heat transfer coefficient is non-zero, the ODE is more difficult to solve 
analytically.  The coefficients of the terms are functions of axial position, z.  I am pretty sure that 
an analytical solution does exist, but I haven’t derived it myself.   
 
Anyway, the problem doesn’t ask for an analytical derivation, only a sketch.  So, once you have 
established what the insulated case should look like, then you have to modify that to account for 
heat loss.  The heat loss will be greater at the wider end of the funnel so the difference between 
the insulated an uninsulated cases out to be greater at the wider end of the funnel.  Seeing as we 
are on page 19 of the solutions, I am going to leave it at that. 


