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ChE 548 
Final Exam 
Spring, 2003 

 
Problem 1. 
 
We know that one can write Fick’s law in an arbitrary form given three pieces of information: 
 (i) the nature of the flux 
 (ii) the nature of the driving force (gradient) 
 (ii) the frame of reference. 
The diffusivity is defined by these three pieces of information.  We can convert the diffusivity to 
be used in one arbitrary form of Fick’s law to another arbitrary form, if we know these three 
pieces of information for both forms of Fick’s law. 
 
Consider the following two forms of Fick’s law for binary diffusion: 
 
Form 1 of Fick’s Law: 
 
 AA wDj ∇ρ−= o          (1.1) 

 
where Aj  is a mass flux of component A relative to the mass-averaged velocity, ρ is the mass 

density, and wA is the mass fraction of component A.  The frame of reference is the mass-
averaged velocity, v, defined as 
 
 BBAA vwvwv +=          (1.2) 
 
where vA is the average molecular velocity of component A. 
 
Form 2 of Fick’s Law: 
 
 A

*
A cDJ µ∇−= •          (1.3) 

 
where *

AJ  is a molar flux of component A relative to the molar-averaged velocity, c is the molar 
density (concentration), and µA is the chemical potential of component A.  The frame of 
reference is the molar-averaged velocity, v*, defined as 
 
 BBAA vxvx*v +=          (1.4) 
 
where vA is the average molecular velocity of component A. 
 
Derive the functional relationship between oD  and •D .
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Problem 2. 
 
Consider a plug-flow reactor of length, L, and diameter, D, operated under isothermal conditions.  
A stream of pure A enters the reactor with a volumetric flowrate, Fin and molar concentration, 
cin.  The following heterogeneous reaction takes place: 
 
 ASSA →+           (2.1) 
 
 BSAS →           (2.2) 
 
 SBBS +→           (2.3) 
 
All steps are irreversible with rates given below 
 
 fckrate SA11 θ=          (2.4) 
 
 fkrate A22 θ=          (25) 
 
 fkrate B33 θ=          (2.6) 
 
The rate constants, k1, k2 and k3 have appropriate units, so that the rates have units of 
moles/m3/sec.   The factor f is a conversion factor with units of moles of adsorption sites/m3, so 
that, for example, fAθ  gives the moles of adsorbed A per unit volume of the reactor.  The 
catalyst is sprayed uniformly onto the interior surface of the reactor wall.  (There are no catalyst 
pellets.)   
 
a.  Derive the transient material balances for the total concentration, c, the mole fraction of A, xA, 
the mole fraction of B, xB, and the fractional loadings θA, θB, and θS. 
b.  Provide a complete set of initial and boundary conditions. 
 
Your balance should be in terms of the six unkowns listed above (c, xA, xB, θA, θB, θS) and the 
given parameters: t (time), z (axial position), L, D, Fin, cin, k1, k2, k3, DAB (the diffusivity of the 
system), and ρS (the surface density of adsorption sites on the wall, units of moles of adsorption 
sites/area). 
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Problem 3. 
 
Recently at the University of Tennessee, molecular dynamics simulations were performed 
calculating the self-diffusivity of methane in mixtures of methane and ethane.  A total of 242 
simulations were performed in systems where the pressure, mole fraction of methane, and 
temperature were varied.  The pressure varied from 0.1 atm to 1000 atm.  The mole fraction 
varied from 0 to 1.  The temperature varied from 275 to 700 K.  In all cases, the mixture was 
above the critical temperature and thus was a single phase. 
 
We fit the simulated self-diffusivities to the expression: 
  

 





−=

RT
EaexpDD oself         (3.1) 

  
where Dself is the self diffusivity, Do is the prefactor, Ea is the activation energy, R is the gas 
constant, and T is the temperature.  Do and Ea are further broken down into 
 

 
( )

n
xDDD Meoxon

o
+

=         (3.2) 

 
and 
 
 nEEE anaoa +=          (3.3) 
 
where xMe is the mol fraction of methane and n is the molar density (concentration).  The 
parameters Don, Dox, Eao, and Ean are simply fitting constants, optimized to give the best 
representation of the simulation results. 
 
When the optimization was complete, we found that the average error was under 5%.  We found 
that the model predicted equally well at all mole fractions and equally well at all temperatures.  
However, we found that the model predicted the self-diffusivity well only at high-pressure, 
above 10 atm.  The data points at low pressure, 0.1 and 1 atm, were fit extremely poorly. 
 
Answer the following questions: 
a.  Why was the low pressure data fit so poorly? 
b.  What alternative do we have to predict the self-diffusivity of low-pressure mixtures? 
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Solution to Problem 1. 
 
Start with the two forms of the mass and molar flux: 
 
 AA wDj ∇ρ−= o          (1) 

 
 A

*
A cDJ µ∇−= •          (2) 

 
Using the definition of the total flux, write an alternate form for the diffusive flux: 
 
 ( )vvj AAA −ρ=          (3) 

 
 ( )*vvcJ AA

*
A −=          (4) 

 
Equate equations (1) and (2); equate equations (3) and (4).  Solve resulting equations for oD  and 

•D . 
 

 ( )vvw
w
1D AA

A
−

∇
−=o         (5) 

 

 ( )*vvx1D AA
A

−
µ∇

−=•         (6) 

 
Substitute in definitions of mass-average and molar average velocity: 
 

 ( ) ( )BABA
A

BBAAAA
A

vvww
w
1vwvwvw

w
1D −

∇
−=−−

∇
−=o   (7) 

 

 ( ) ( )BABA
A

BBAAAA
A

vvxx1vxvxvx1D −
µ∇

−=−−
µ∇

−=•    (8) 

 
Solve equation (7) for ( )BA vv −  
 

 ( ) A
BA

BA w
ww

D
vv ∇−=−

o

        (9) 

 
Substitute equation (9) into equation (8). 
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Useful Relations: 
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The reciprocal relations are: 
 

∑
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Alternate definition of mass and molar diffusive fluxes 
 
 ( )vvj AAA −ρ=          (A.5) 

 
 ( )*vvcJ AA

*
A −=          (A.6) 

 
The total mass and molar fluxes of the component A:  
 
 AAAAA jvwvwn +ρ=ρ=         (A.7) 

 
 *

AA
*
AAA J*vcxvcxN +==         (A.8) 

 
definition of mass and molar average velocities: 
 

 ∑
=

=
cN

1i
ii vwv    ∑

=
=

cN

1i
ii vx*v       (A.9) 
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Solution to Problem 2. 
 
The total mole balance contains accumulation and convection terms.  There is no diffusion term 
in the total mole balance.  In the transient state, there is a net generation of moles because 
reactions 1 and 3 change the moles of material in the bulk and the rates of 1 and 3 are not equal 
in the transient state. 
 

 fkfcxk
z
cvraterate

z
cv

t
c
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∂
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∂
∂

−=
∂
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The balance on the mole fraction of A contains a convection term, diffusion term, reaction term 
and an accumulation term due to the change in the total concentration: 
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The balance on the mole fraction of B contains a convection term, diffusion term, reaction term 
and an accumulation term due to the change in the total concentration: 
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    (2.3) 

 
The balance on the fractional loadings contain no convection or diffusion terms, only reaction 
terms. 
 

 [ ] A2SA121
A kcxkraterate

f
1

t
θ−θ=−=

∂
θ∂      (2.4) 

 

 [ ] B3A232
B kkraterate

f
1

t
θ−θ=−=

∂
θ∂       (2.5) 
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 [ ] B3SA131
S kcxkraterate
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     (2.6) 

 
A complete set of initial and boundary conditions could be: 
 
Initial conditions: 
 
c(t=0,z) = cin 
xA(t=0,z) = xA,in = 1 
xB(t=0,z) = xB,in = 0 
θA(t=0,z) = θA,in = 0  
θB(t=0,z) = θB,in = 0  
θS(t=0,z) = θS,in = 1  
 
Boundary conditions at the inlet: 
 
c(t,z=0) = cin 
xA(t,z=0) = xA,in = 1 
xB(t,z=0) = xB,in = 0 
 
You don't need boundary conditions on the fractional loadings, because there is no spatial 
derivative (no gradients and no laplacians) in the balances on the fractional loadings. 
 
 
Boundary conditions at the outlet: 
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You don't need boundary conditions on the fractional loadings, because there is no spatial 
derivative (no gradients and no laplacians) in the balances on the fractional loadings. 
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Solution to Problem 3. 
 
 
a.  Why was the low pressure data fit so poorly? 
 
We know from kinetic theory, that the self-diffusivity of low pressure gases is not an activated 
process.  Fitting this to a model which assumes an Arrhenius form is therefore not going to work 
over a broad parameter space. 
  
b.  What alternative do we have to predict the self-diffusivity of low-pressure mixtures? 
 
We should kinetic theory, which delivers quite reasonable results for low-pressure gases. 


