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Problem 1.

We know that one can write Fick’s law in an arbitrary form given three pieces of information:
(1) the nature of the flux
(i1) the nature of the driving force (gradient)
(11) the frame of reference.
The diffusivity is defined by these three pieces of information. We can convert the diffusivity to
be used in one arbitrary form of Fick’s law to another arbitrary form, if we know these three
pieces of information for both forms of Fick’s law.

Consider the following two forms of Fick’s law for binary diffusion:

Form 1 of Fick’s Law:

jp =—pD°Vwp (1.1)

where j A is a mass flux of component A relative to the mass-averaged velocity, p is the mass

density, and wa is the mass fraction of component A. The frame of reference is the mass-
averaged velocity, v, defined as

V=WAVa +WRVp (1.2)
where va is the average molecular velocity of component A.

Form 2 of Fick’s Law:

Jp =—cD*Vpp (1.3)

where J, is a molar flux of component A relative to the molar-averaged velocity, C is the molar

density (concentration), and pa is the chemical potential of component A. The frame of
reference is the molar-averaged velocity, v*, defined as

V¥=XaAVa +XBVp (1.4)
where Va is the average molecular velocity of component A.

Derive the functional relationship between D° and D°®.
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Problem 2.

Consider a plug-flow reactor of length, L, and diameter, D, operated under isothermal conditions.
A stream of pure A enters the reactor with a volumetric flowrate, Fj, and molar concentration,
Cin. The following heterogeneous reaction takes place:

A+S — AS (2.1)
AS - BS (2.2)
BS—>B+S (2.3)

All steps are irreversible with rates given below

rateq =kqca0gf 2.4
rate2 = k26Af (25)
rate3 = k3er (2.6)

The rate constants, k4, K, and k; have appropriate units, so that the rates have units of
moles/m*/sec. The factor f is a conversion factor with units of moles of adsorption sites/m”, so
that, for example, O5f gives the moles of adsorbed A per unit volume of the reactor. The
catalyst is sprayed uniformly onto the interior surface of the reactor wall. (There are no catalyst
pellets.)

a. Derive the transient material balances for the total concentration, c, the mole fraction of A, Xa,
the mole fraction of B, Xg, and the fractional loadings 64, 6s, and 0Os.
b. Provide a complete set of initial and boundary conditions.

Your balance should be in terms of the six unkowns listed above (C, Xa, Xg, 04, 05, 0s) and the
given parameters: t (time), z (axial position), L, D, Fin, Cin, K1, Kz, K3, Dag (the diffusivity of the
system), and ps (the surface density of adsorption sites on the wall, units of moles of adsorption
sites/area).
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Problem 3.

Recently at the University of Tennessee, molecular dynamics simulations were performed
calculating the self-diffusivity of methane in mixtures of methane and ethane. A total of 242
simulations were performed in systems where the pressure, mole fraction of methane, and
temperature were varied. The pressure varied from 0.1 atm to 1000 atm. The mole fraction
varied from 0 to 1. The temperature varied from 275 to 700 K. In all cases, the mixture was
above the critical temperature and thus was a single phase.

We fit the simulated self-diffusivities to the expression:

Ea
D =D, exp| -— 3.1
self ) p[ RT) (3.1)

where Dsgt is the self diffusivity, D, is the prefactor, E, is the activation energy, R is the gas
constant, and T is the temperature. D, and E, are further broken down into

D.— (Don JrDoxXMe)
°- n

(3.2)

and
Ea=Ego +Egnn (3.3)

where Xy is the mol fraction of methane and n is the molar density (concentration). The
parameters Don, Dox, Eao, and Egp are simply fitting constants, optimized to give the best
representation of the simulation results.

When the optimization was complete, we found that the average error was under 5%. We found
that the model predicted equally well at all mole fractions and equally well at all temperatures.
However, we found that the model predicted the self-diffusivity well only at high-pressure,
above 10 atm. The data points at low pressure, 0.1 and 1 atm, were fit extremely poorly.

Answer the following questions:
a. Why was the low pressure data fit so poorly?
b. What alternative do we have to predict the self-diffusivity of low-pressure mixtures?
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Solution to Problem 1.

Start with the two forms of the mass and molar flux:

jA :_pDOVWA (1)

Jp =-cD*Vip 2)

Using the definition of the total flux, write an alternate form for the diffusive flux:

in=palva-v) (3)

Ja=calva-v*) )

Equate equations (1) and (2); equate equations (3) and (4). Solve resulting equations for D° and

D°.
D" =———wp(vp V) (5)
VWA o -
L] 1 *
D* =————xalva-v7) (6)
HA

Substitute in definitions of mass-average and molar average velocity:

. 1 1
D° = —mWA(YA —WaAVa —WB!B)= _mWAWB(YA —MB) (7)

D* =-

1
Xa(VA —XAVA —XgVp)= “Via xaxg(Va —Vg) (8)

Via

Solve equation (7) for (y A~ YB)

DO

WaAWB

(va-vg)=- A )

Substitute equation (9) into equation (8).
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XAXB VWA D° = XAXB 6WA D°
WaAWB Vip WAWR JuA

D* = (10)
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Useful Relations:

Ne Wi
i=
Wi
Cj MWJ
x; = (A.2)
c Nc Wi
MW,

Nc
p= CZ XiMWi (A.3)
i=1
i XMW,
Wi = Py XYY (A.4)
Nc
ZXiMWI

Alternate definition of mass and molar diffusive fluxes

in=palva-v) (A5)

Ja =ca(va-v) (A.6)
The total mass and molar fluxes of the component A:

NA =PWAVA =PWAV + ], (A7)

Np =CXAVA =CXAV* +Jp (A.8)

definition of mass and molar average velocities:

N N
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o

(A.9)
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Solution to Problem 2.

The total mole balance contains accumulation and convection terms. There is no diffusion term
in the total mole balance. In the transient state, there is a net generation of moles because

reactions 1 and 3 change the moles of material in the bulk and the rates of 1 and 3 are not equal
in the transient state.

oc ocv ocv
— =—-—"—rateq +rateq = ————k4cxa0sf +ka0pf 2.1
o oz 1 37 ey TTATSITISTB _
where V=E—n=|:i—n and where f =pg A\\/S =ps DL =ps%
X %D2 %DzL

The balance on the mole fraction of A contains a convection term, diffusion term, reaction term
and an accumulation term due to the change in the total concentration:

—aXA = 1|:— XA a—c— 8CXAV +£(CDAB —agA j - rate1:|
zZ zZ

ot c ot 0z 15)
(2.2)
1 oc ocxpVv 0 OX A
=—|—=Xp —— +—| cDap —= | —k4CX pOcf
c{ Aat ™ oz 82( AB azj 1 AS}

The balance on the mole fraction of B contains a convection term, diffusion term, reaction term
and an accumulation term due to the change in the total concentration:

ot ¢ ot 0z 0
(2.3)
1 oc ocxgVv 0 OXB
=—|-xg = - 2 cDpag =B |- k40pf
c{ S oz 82( AB azj 3 B}

The balance on the fractional loadings contain no convection or diffusion terms, only reaction
terms.

a?TA:%[ratm —rate, | =kqcxabs —ko0a (2.4)
oog 1

—¥[ratez —rate3]:k29A —k3eB (2.5)
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00

% %[— rateq + rate3]: —k4cxp0g +k30p

A complete set of initial and boundary conditions could be:
Initial conditions:

c(t=0,z) = cin

XA(t=0,Z) = Xajin = 1
XB(t=0,Z) = XB,in = 0
GA(t=0,z) = GA,in =0
93(12:0,2) = GB,in =0
es(t=0,Z) = eS,in =1

Boundary conditions at the inlet:

c(t,z=0) = cin
XA(t,Z=0) = Xajin = 1
XB(t,Z=0) = XB,in = 0

You don't need boundary conditions on the fractional loadings, because there is no spatial
derivative (no gradients and no laplacians) in the balances on the fractional loadings.

Boundary conditions at the outlet:

o
0Z|,_

OX A
oz |
aXB
0z

=0
z=L

=0
z=L

You don't need boundary conditions on the fractional loadings, because there is no spatial
derivative (no gradients and no laplacians) in the balances on the fractional loadings.

(2.6)
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Solution to Problem 3.

a. Why was the low pressure data fit so poorly?

We know from kinetic theory, that the self-diffusivity of low pressure gases is not an activated
process. Fitting this to a model which assumes an Arrhenius form is therefore not going to work
over a broad parameter space.

b. What alternative do we have to predict the self-diffusivity of low-pressure mixtures?

We should kinetic theory, which delivers quite reasonable results for low-pressure gases.



