ChE 548: Advanced Transport Phenomena 11
Spring, 2008
Midterm

Problem 1. Consider diffusion in a binary, isothermal system. You have been provided the
diffusivity of component A in B, D,;, with the understanding that (i) diffusion is measured

relative to the center of mass velocity, v, (ii) the units of the diffusive flux of A, , are mass of A
per area per time, j,, and (iii) the driving force for diffusion is the molar concentrations, C, and
Cs, with a constitutive equation given by,

jA :_mAD;BVCA jB :_mBD;AVCB (1)

where ma and mg are the respective molecular weights of components A and B. Answer the
following questions.

(@) In this case, do the diffusive fluxes sum to zero? Provide the proof.

(b) Derive the relationship between Dg, and D,;.

(c) Consider the traditional case in which (i) diffusion is measured relative to the center of mass
velocity, v, (ii) the units of the diffusive flux of A, , are mass of A per area per time, j,, and (iii)
the driving force for diffusion is the mass fractions, wa and wg, with a constitutive equation given
by,

ja =—pPDVW, jg =—PDVWwy (2)
Find the relationship between D and D, .

Solution:

(@) In this case, do the diffusive fluxes sum to zero? Provide the proof.

Whether or not the diffusive fluxes sum to zero is based only on the first two assumptions given
above, (i) diffusion is measured relative to the center of mass velocity, v, (ii) the units of the

diffusive flux of A, , are mass of A per area per time, j,. Itis independent of the choice of
constitutive equations. For these two assumptions, the diffusive fluxes will sum to zero. Proof

below.

total mass flux of each component relative to stationary laboratory frame of reference
AN Ng = PV (1.5)

mass-averaged (or center-of-mass) velocity relative to laboratory frame of reference

V=W,V,+WgV, (1.6)



convective mass flux of each component relative to stationary laboratory frame of reference

Aa = PW,V

As = AWV

diffusive flux of each component relative to mass-averaged velocity

Ja=Na—%a

Substitution of (1.5) and (1.7) into (1.8) yields

Ja :/OWA(VA _V)

Substitution of (1.6) into (1.9) yields

Ja= W (Vo —Ve)
Consequently,

Jat+is =0
Q.E.D.

(b) Derive the relationship between Dg, and D,;.

Jg =Ng —Xs

jB :/OWB(VB _V)

Js :PWAWB(VB _VA)

Substitution of equation (1) into equation (1.11) yields

jA+jB:0

~m,D;,VC, —m,D;,VC, =0

m, ( 0C
D =——A|ZZA D
BA mB (8CB] AB

(1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.11)

(1.12)

(1.13)

This thermodynamic partial derivative that appears in equation (1.13) can be rendered into more
familiar terms, given that we understand that the total concentration is a sum of the component

concentrations,
Cat+Cp = CTOT

0C, Crr 0C, Cir

= -1
oC, oC, oC, oC,

Cg =Cior Xg

(1.14)

(1.15)

(1.16)



oC 0C. o7 X OX oC OX
= T B — CTOT =+ Xg oL = CTOT —+ Xg (|-17)
aCTOT aCTOT aCTOT 6CTOT aCTOT

Subsitution of (1.17) into (1.15) yields

OX
X, +Cror —
aCA B 1 L A TOT 8CTOT
o= = 1= = (1.18)
8 Cror T+ Xg Xg + Cror °
aCTOT aCTOT

The partial derivatives that now appear in equation (1.18) are related to the familiar partial molar
volume of a mixture.

(c) Consider the traditional case in which (i) diffusion is measured relative to the center of mass
velocity, v, (ii) the units of the diffusive flux of A, , are mass of A per area per time, j,, and (iii)
the driving force for diffusion is the mass fractions, wa and wg, with a constitutive equation given
by,

ja =—pPDVW, Jjg =—PDVWy (2)
Find the relationship between D and D, .
In this case the diffusive mass fluxes are relative to the same reference velocity and they have the
same units, so they can be equated.

jA = —pDvWA = _mAD;BVCA jB = —pDVWB = —mB D;AVCB (Ilg)

Solving for D yields,

D:&[ZVCVAJD;B D:%[GCBJDEA (1.20)
P A

Taken with equation (1.13), these expressions are equivalent.

D:%[ZVCVAJD;B D:&[aCAJD;B (1.22)
P A

Additional notes, not necessary for exam solution:
Again, this thermodynamic partial derivative can be expressed in a more familiar way as



aCA _ aCTOT XA _ acTOT XA aXA — [C X aCTOT jaX_A (I 22)
= - TOT A '

W,  ow, X, oW, X, )ow,

Since, for a binary system,

OX,  XpXg (1.23)
aWA WAWB .
substitution of (1.23) into (1.22) yields
Co [, +x, Lot | XaXe (1.24)
OW AN A
substitution of (1.24) into (1.21) yields
m oC X4 X
D=—2|Cyy +X,—2 |22 D; 1.25
,0 [ TOT A 8XA jWAWB AB ( )

Again, the missing partial derivative is related to the partial molar volume of the mixture.

Problem 2. In a molecular dynamics simulation, the long-time behavior of the mean square
displacement as a function of time gives rise to the self-diffusivity via the Einstein relation,

. <[r(t+r)—r(t)]2>

self 2 d o r

D (11.1)

where d is the dimensionality of the system, r is a particle position, t is time, t is elapsed time,
and the angled brackets indicate an average over both all particle trajectories as well as all times,
t.

(a) Sketch a qualitative plot of MSD vs elapsed time. Indicate how one obtains the self-
diffusivity from this plot.

(b) Sketch a qualitative plot of In(MSD) vs In(elapsed time). Indicate how one uses such a plot
to determine if the simulation has indeed reached the infinite-time limit required by the Einstein
relation.

Solution:

(a) Sketch a qualitative plot of MSD vs elapsed time. Indicate how one obtains the self-
diffusivity from this plot.



6.0E+02

—x-MSD (A"2)
—y-MSD (Ar2)
506402 { [——2z:MSD (A"2)
<
~ 4.0E+02
c
[}
£
[}
Q
]
=
9 3.0E+02
©
o
©
]
o
2]
S 2.0E+02
(]
=
1.0E+02
0.0E+00 r r r r
0.0E+00 2.0E+04 4.0E+04 6.0E+04 8.0E+04 1.0E+05

elapsed time (fs)

In this plot, you observe nonlinear behavior at short time and linear behavior at long times. The
variation between x, y and z in an isotropic material is an indication of the uncertainty in the
measurement. The slope of the long-time linear part of these curves is 2D. The dimensionality
here is considered as one since we analyze the three dimensions independently.

(b) Sketch a qualitative plot of In(MSD) vs In(elapsed time). Indicate how one uses such a plot
to determine if the simulation has indeed reached the infinite-time limit required by the Einstein
relation.
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In this log-log plot, we can more clearly observe the exponent relating the elapsed time to the
MSD. At short times, the curves follows a quadratic (m=2) limit. At long times, the curves
follow a linear (m=1) limit.



