
ChE 548:  Advanced Transport Phenomena II 
Spring, 2008 

Midterm 
 
Problem 1.  Consider diffusion in a binary, isothermal system.  You have been provided the 
diffusivity of component A in B, o

ABD , with the understanding that (i) diffusion is measured 
relative to the center of mass velocity, v, (ii) the units of the diffusive flux of A, , are mass of A 
per area per time, Aj , and (iii) the driving force for diffusion is the molar concentrations, AC  and 
CB, with a constitutive equation given by,  
 
 AABAA CDm ∇−= oj    BBABB CDm ∇−= oj     (1) 
 
where mA and mB are the respective molecular weights of components A and B.  Answer the 
following questions. 
 
(a) In this case, do the diffusive fluxes sum to zero?  Provide the proof. 
(b) Derive the relationship between o

BAD  and o
ABD . 

(c) Consider the traditional case in which (i) diffusion is measured relative to the center of mass 
velocity, v, (ii) the units of the diffusive flux of A, , are mass of A per area per time, Aj , and (iii) 
the driving force for diffusion is the mass fractions, wA and wB, with a constitutive equation given 
by,  
 
 AA wD∇−= ρj     BB wD∇−= ρj    (2) 
 
Find the relationship between D and o

ABD . 
 
Solution: 
 
(a) In this case, do the diffusive fluxes sum to zero?  Provide the proof. 
 
Whether or not the diffusive fluxes sum to zero is based only on the first two assumptions given 
above, (i) diffusion is measured relative to the center of mass velocity, v, (ii) the units of the 
diffusive flux of A, , are mass of A per area per time, Aj .  It is independent of the choice of 
constitutive equations.  For these two assumptions, the diffusive fluxes will sum to zero.  Proof 
below. 
 
total mass flux of each component relative to stationary laboratory frame of reference 
 
 AAA w vn ρ=      BBB w vn ρ=     (I.5) 
 
mass-averaged (or center-of-mass) velocity relative to laboratory frame of reference 
 
 BBAA ww vvv +=          (I.6) 
 



convective mass flux of each component relative to stationary laboratory frame of reference 
 
 vAA wρ=χ      vBB wρ=χ     (I.7) 
 
diffusive flux of each component relative to mass-averaged velocity 
 
 AAA χ−= nj      BBB χ−= nj     (I.8) 
 
Substitution of (I.5) and (I.7) into (I.8) yields 
  
 ( )vvj −= AAA wρ     ( )vvj −= BBB wρ    (I.9) 
 
Substitution of (I.6) into (I.9) yields 
 
 ( )BABAA ww vvj −= ρ     ( )ABBAB ww vvj −= ρ    (I.10) 
 
Consequently, 
  
 0=+ BA jj           (I.11) 
 
Q.E.D. 
 
(b) Derive the relationship between o

BAD  and o
ABD . 

 
Substitution of equation (1) into equation (I.11) yields 
 
 0=+ BA jj           (I.11) 
 
 0=∇−∇− BBABAABA CDmCDm oo        (1.12) 
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This thermodynamic partial derivative that appears in equation (I.13) can be rendered into more 
familiar terms, given that we understand that the total concentration is a sum of the component 
concentrations, 
 
 TOTBA CCC =+          (I.14) 
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 BTOTB xCC ≡           (I.16) 
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Subsitution of (I.17) into (I.15) yields 
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The partial derivatives that now appear in equation (I.18) are related to the familiar partial molar 
volume of a mixture. 
 
(c) Consider the traditional case in which (i) diffusion is measured relative to the center of mass 
velocity, v, (ii) the units of the diffusive flux of A, , are mass of A per area per time, Aj , and (iii) 
the driving force for diffusion is the mass fractions, wA and wB, with a constitutive equation given 
by,  
 
 AA wD∇−= ρj     BB wD∇−= ρj    (2) 
 
Find the relationship between D and o

ABD . 
In this case the diffusive mass fluxes are relative to the same reference velocity and they have the 
same units, so they can be equated. 
 
 AABAAA CDmwD ∇−=∇−= oρj   BBABBB CDmwD ∇−=∇−= oρj  (I.19) 
 
Solving for D yields, 
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Taken with equation (I.13), these expressions are equivalent. 
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Additional notes, not necessary for exam solution: 
Again, this thermodynamic partial derivative can be expressed in a more familiar way as  
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Since, for a binary system, 
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substitution of (I.23) into (I.22) yields 
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substitution of (I.24) into (I.21) yields 
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Again, the missing partial derivative is related to the partial molar volume of the mixture. 
 
Problem 2. In a molecular dynamics simulation, the long-time behavior of the mean square 
displacement as a function of time gives rise to the self-diffusivity via the Einstein relation, 
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 where d is the dimensionality of the system, r is a particle position, t is time, τ is elapsed time, 
and the angled brackets indicate an average over both all particle trajectories as well as all times, 
t. 
(a) Sketch a qualitative plot of MSD vs elapsed time.  Indicate how one obtains the self-
diffusivity from this plot. 
(b) Sketch a qualitative plot of ln(MSD) vs ln(elapsed time).  Indicate how one uses such a plot 
to determine if the simulation has indeed reached the infinite-time limit required by the Einstein 
relation. 
 
Solution: 
 
(a) Sketch a qualitative plot of MSD vs elapsed time.  Indicate how one obtains the self-
diffusivity from this plot. 
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In this plot, you observe nonlinear behavior at short time and linear behavior at long times.  The 
variation between x, y and z in an isotropic material is an indication of the uncertainty in the 
measurement.  The slope of the long-time linear part of these curves is 2D.  The dimensionality 
here is considered as one since we analyze the three dimensions independently. 
 
(b) Sketch a qualitative plot of ln(MSD) vs ln(elapsed time).  Indicate how one uses such a plot 
to determine if the simulation has indeed reached the infinite-time limit required by the Einstein 
relation. 
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In this log-log plot, we can more clearly observe the exponent relating the elapsed time to the 
MSD.  At short times, the curves follows a quadratic (m=2) limit.  At long times, the curves 
follow a linear (m=1) limit. 
 


