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I.  Derivation of the analytical method for solving a single first-order linear ODE 
 
In its most general form, a single first-order linear ODE can be written as: 
 

 )x(by)x(a
dx
dy

=+          (I.1) 

 
and we have an initial condition of the form: 
 
 oo y)xx(y ==          (I.2) 
 
A.  Method of the integrating factor 
We solve this problem by using an integrating factor, namely: 
 

 ∫= dx)x(ae.F.I          (I.3) 
 
Multiply both side of equation (I.1) by our integrating factor yields: 
 

 ∫∫ =



 + dx)x(adx)x(a e)x(bey)x(a
dx
dy

      (I.4) 

 
We must recognize that the L.H.S. of the equation can be rearranged as 
 

 
( )

dx
yed

ey)x(a
dx
dy

dx)x(a
dx)x(a

∫
∫ =



 +       (I.5) 

 
so that equation (I.3) becomes: 
 

 
( ) ∫

∫
= dx)x(a

dx)x(a

e)x(b
dx

yed
       (I.6) 

 
Then, we separate variables: 
 

 ( ) dxe)x(byed dx)x(adx)x(a ∫∫ =        (I.7) 
 
and integrate 
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 ( ) ∫∫
==

∫∫ =
x

oxx

dx)x(a
y

oyy

dx)x(a dxe)x(byed       (I.8) 

 

 [ ] ∫
=

=
∫∫∫ =−

x

oxx

dx)x(a
oxx 

dx)x(adx)x(a dxe)x(byeye     (I.9) 

 
 We can rearrange this as: 
 

 [ ] ∫∫∫ −

=
=













+= ∫
dx)x(a

x

oxx

dx)x(a
oxx 

dx)x(a edxe)x(bye)x(y    (I.10) 

 
 This is the general solution to a single first-order linear ODE. 
 
Example.  Integrating Factor 
 As an example, consider the case where a = 2 and b(x) = 3x with the initial condition 

5)4x(y == .  We have an integrating factor: 
 

 x2dx)x(a ee.F.I == ∫         (I.11) 
 
The integral on the R.H.S. of equation (I.10) is         
  

 

x

4x

x2x

4x

x2
x

oxx

dx)x(a

2
1x

2
e3dxxe3dxe)x(b

===














 −== ∫∫ ∫    (I.12) 

 

 













−






 −=∫

=

∫
2
7

2
e

2
1x

2
e3dxe)x(b

8x2x

oxx

dx)x(a     (I.13) 

 

[ ] 8ox2
ooxx 

dx)x(a e5eyye ===
∫       (I.14) 

 
so that our solution (equation (I.10)) becomes: 
 

 ( )[ ] x28x28 ee71x2e
4
3e5)x(y −







 −−+=      (I.15) 

  
 
B.  Homogeneous and Particular solutions  
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The ODE  
 

 )x(by)x(a
dx
dy

=+          (I.1) 

 
is called homogeneous when 0)x(b = .  Otherwise it is non-homogeneous.  We can solve this 
problem in a way that is algorithmically different than the integrating factor.  It is useful to do so 
because it is this second method that we will eventually extend to solve systems of linear ODEs. 
 
The general solution of this nonhomogeneous equation, ( )xynh , is the sum of the solution to the 
homogeneous equation, ( )xyh , and a particular solution, ( )xyp . 
 
 ( ) ( ) ( )xyxyxy phnh +=         (I.16) 
 
We obtain the homogeneous solution by solving: 
 

 0y)x(a
dx
dy

=+          (I.17) 

 
This is easily shown, (using separation of variables) to yield a solution 
 

 )x(cyce)x(y id
dx)x(a

h == ∫−        (I.18) 
 
where c  is a constant that satisfies the non-homogeneous problem and the initial conditions and 

)x(yid  is the indefinite homogeneous solution, which does not take into account the initial 
conditions.  Note that you cannot solve for c until you have both ( )xyh  and ( )xyp . 
 The theory of ODEs tells us that we ought to search for a solution to the particular 
equation with the form: 
 
 ( ) ( )xy)x(uxy idp =          (I.19) 
 
Another way to look at the non-homogeneous solution is then 
 
 ( ) [ ] ( )xy)x(ucxy idnh +=         (I.20) 
 
To derive the functional form of ( )xu , we simply plug our solution ( )xynh  into  our ODE, as 
given in equation (I.1). 
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 [ ] [ ] )x(byuc)x(a
dx

dyucy
dx
du

id
id

id =++++      (I.21) 

 

 )x(by
dx
duy)x(a

dx
dyuy)x(a

dx
dyc idid

id
id

id =+





 ++






 +    (I.22) 

 

 ( ) )x(by
dx
du)0(u0c id =++        (I.23) 

 

 dx
y

)x(bu
id

∫=          (I.24) 

 
Once we have ( )xu , we can obtain c  
  
 ( ) [ ] ( )oidooonh xxy)xx(ucyxxy ==+===     (I.25) 
  

 ( ) )xx(u
xxy

yc o
oid

o =−
=

=        (I.26) 

 
so that our final solution becomes 
 

 ( ) ( ) ( )xydx
y

)x(bdx
y

)x(b
xxy

yxy id
idoxxidoid

o
nh












+








−

=
= ∫∫

=

  (I.27) 

 

 ( ) ∫
∫∫∫

−
−

=
−

=
− 











+








−








= ∫∫

dx)x(a
dx)x(a

oxx
dx)x(a

oxx
dx)x(a

o
nh edx

e
)x(bdx

e
)x(b

e
yxy  

            (I.28a) 
 
It is worthwhile pointing out here that we could write this  solution as: 
 

 ( ) ( ) ( ) ∫
∫

−

=
− 











+−








= dx)x(a

o
oxx

dx)x(aonh exuxu
e

1yxy    (I.28b) 

 
Example.  Homogeneous and particular solutions 
 As an example, consider the case where a = 2 and b(x) = 3x with the initial condition 

5)4x(y == .   
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 x2dx)x(a
h cece)x(y −− == ∫        (I.29) 

 
 x2

id e)x(y −=          (I.30) 
 

 





 −=== ∫∫ − 2

1xe
2
3dx

e
x3dx

y
)x(bu x2

x2
id

     (I.31) 

 

 





 −−=

2
1xe

2
3eyc o

ox2ox2
o        (I.32) 

 

 ( ) x2x2
o

ox2ox2
onh e

2
1xe

2
3

2
1xe

2
3eyxy −















 −+






 −−=   (I.33) 

 

 ( ) x2x288
nh e

2
1xe

2
3

2
7e

2
3e5xy −















 −+






−=     (I.34) 

 
which is the same result we obtained from using the integrating factor method. 

This has shown us how we can solve any single first-order linear ODE.   What if we have 
a single higher-order linear ODE.  We can reduce a single nth-order linear ODE to a system of n 
first-order linear ODEs.  (Refer to ChE 301 notes for a refresher on this process.)  Therefore, if 
we know how to solve a system of n first-order linear ODEs, we know how to solve any single 
linear ODE of arbitrary order. 
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II.  Extension of the analytical method to systems of first-order linear ODEs 
 
In its most general form, a system of n first-order linear ODEs can be written as: 
 

 )x(by)x(a
dx
dy

i
n

1j
jj,i

i =+ ∑
=

        (II.1) 

 
where we have n of these equations and we have n initial conditions of the form: 
 
 i,ooi y)xx(y ==          (II.2) 
 
We can write this system in matrix notation as: 
 

 )x(by)x(A
dx

yd
=+         (II.3) 

 
 oo y)xx(y ==          (II.4) 

 
Things get ugly pretty fast in this case.  We will limit ourselves to the case where A is a matrix 
of constants and not a function of x.  (If we want to solve the case where A  is a function of x, 
then we had better turn to a numerical solution.) 
 
Example 1.  Homogeneous Case 0)x(b =  
 
When 0)x(b = , mathematicians refer to the problem as homogeneous.  The terminology isn't 
important, only that we can obtain the solutoin. 
 
Our system has the form: 
 

 y)x(A
dx

yd
=          (1.1) 

 
 oo y)xx(y ==          (1.2) 

 
In order to obtain the general analytical solution, we need to recall a good amount of linear 
algebra theory. 
The adjoint (complex conjugate of the transpose) of the matrix A , is designated ∗A .  For a real 
matrix, the adjoint of A  is the transpose so  
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 TAA =∗ .          (1.3) 
 
The matrix A  has eigenvalues,  n1n321 ,,, λλλλλ −K   and eigenvectors, 

n,c1n,c3,c2,c1,c w,ww,w,w −K .  

The eigenvalues of its adjoint ∗A  are identical to the eigenvalues of A :  321 ,, λλλ .  The 

eigenvectors of ∗A  are known as the eigenrows of A :  3,r2,r1,r w,w,w . 
 The most general solution to  
 

 y)x(A
dx

yd
=          (1.4) 

 
 oo y)xx(y ==          (1.5) 

 
is going to be of a form 
 

 ( ) ( )[ ]{ }∑
=

−λ=
n

1i
oii,cih xxexpwcxy       (1.6) 

 
which can be written in matrix notation as 
 
 ( ) ( )[ ]cxxexpWxy och −Λ=        (1.6) 

 
where cW  is the matrix of eigenvectors  
 

[ ]n,c1,cc w,,wW L=         (1.7) 

 
and Λ  is the diagonal matrix of eigenvalues  
 

















λ

λ
=Λ

n

1

00
00
00

O         (1.8) 

 
such that 
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( )[ ]
( )[ ]

( )[ ]
















−λ

−λ
=−Λ

on

o1

o

xxexp00
00
00xxexp

xxexp O    (1.9) 

 
 
 
 
In this case: 
 

( )[ ]
( )[ ]

( )[ ] 

















−λ

−λ

=−Λ

non

1o1

o

cxxexp

cxxexp
cxxexp M      (1.10) 

 
and 
 

( ) ( )[ ]
( )[ ]

( )[ ] 



















−λ

−λ

=−Λ=

∑

∑

=

=

ioi
n

1i
i,nc

ioi
n

1i
i,1c

och

cxxexpw

cxxexpw

c xxexpWxy M   (1.11) 

 
So we see that the matrix formulation is equivalent to the summation formulation. 
The constant c  can then be determined from the initial condition. 
 

( ) ( )[ ] ooocoh yc xxexpWxy =−Λ=       (1.12) 

 

o
1

c yWc −=          (1.13) 

 
so that the homogeneous solution becomes 
 

( ) ( )[ ] o
1

coch yW xxexpWxy −−Λ=       (1.14) 

 
Now, this form of the solution is perfectly legitimate.  However, there is another form that is 
often presented as the solution and we will derive that too.  Consider that 
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( ) 1
c

1T
r

1
c

T
r WW WW −−− =        (1.15) 

       
then 
 

( ) 1
c

T
r

T
r

1
c  WWWW −− =        (1.16)  

  
We need to recognize that 

 

( )
( )

( )



















⋅

⋅
=−

n,cn,r

1,c1,r
1

c
T

r

ww
100
00

00
ww

1

 WW O     (1.17)  

  
 
      

This allows us to write the solution as 
 

( ) ( )[ ] ( ) o
1

c
T

r
T

roch y WWW xxexpWxy −−Λ=     (1.18) 

 

( ) ( )[ ]

( )
( )

( )
( )






















⋅

⋅

⋅

⋅

−Λ=

n,cn,r

on,r

1,c1,r

o1,r

och

ww
yw

ww
yw

 xxexpWxy M      (1.19) 

 

( )

( )
( ) ( )[ ]

( )
( ) ( )[ ]























−λ
⋅

⋅

−λ
⋅

⋅

=

on
n,cn,r

on,r

o1
1,c1,r

o1,r

ch

xxexp
ww
yw

xxexp
ww
yw

 Wxy M      (1.20) 
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( )

( )
( ) ( )[ ]

( )
( ) ( )[ ]























−λ
⋅

⋅

−λ
⋅

⋅

=

∑

∑

=

=

n

1i
oi

n,cn,r

on,r
i,nc

n

1i
oi

1,c1,r

o1,r
i,1c

h

xxexp
ww
yw

w

xxexp
ww
yw

w

xy M     (1.21) 

 
 

 ( )
( )

( ) ( )[ ]∑
= 








−λ⋅⋅
⋅

⋅
=

n

1i
oii,c

i,ci,r

oi,r xxexpw
ww
yw

xy     (1.22) 

 
In the case where n =1, the eigenvector  and eigenrow are scalars with the value of unity and we 
have only a single equation.  We see that we obtain the single equation solution: 
 
 ( ) ( )[ ]oio xxexpyxy −λ⋅=        (1.23) 
 
PROOF: (by substitution) 
 

 y)x(A
dx

yd
=          (1.24) 

 
( )

( ) ( )[ ] ( )
( ) ( )[ ]∑

∑

=

=









−λ⋅⋅
⋅

⋅
=








−λ⋅⋅
⋅

⋅
n

1i
oii,c

i,ci,r

oi,r

n

1i
oii,c

i,ci,r

oi,r

xxexpw
ww
yw

A
dt

xxexpw
ww
yw

d
 

            (1.25) 
 

( )
( )

( )[ ] ( )
( ) ( )[ ]∑∑

== 







−λ⋅⋅
⋅

⋅
=







 −λ

⋅⋅
⋅

⋅ n

1i
oii,c

i,ci,r

oi,rn

1i

oi
i,c

i,ci,r

oi,r xxexpw
ww
yw

A
dt

xxexpdw
ww
yw

 

            (1.26) 
 

( )
( ) ( )[ ] ( )

( ) ( )[ ]∑∑
== 








−λ⋅⋅
⋅

⋅
=









λ−λ⋅⋅
⋅

⋅ n

1i
oii,c

i,ci,r

oi,rn

1i
ioii,c

i,ci,r

oi,r xxexpw
ww
yw

Axxexpw
ww
yw

 

            (1.27) 
 
Let the matrix of eigenvectors (an nxn matrix) be defined: 
 

[ ]n,c1,cc w,,wW L=         (1.28) 
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and let the matrix of eigenvalues (a diagonal nxn matrix) be defined:  
 

















λ

λ
=Λ

n

1

00
00
00

O         (1.29) 

 
 

( )
( ) ( )[ ]∑

= 







−λ⋅
⋅

⋅
=

n

1i
oi

i,ci,r

oi,r xxexp
ww
yw

c       (1.30) 

 
and let 
 

( )
( ) ( )[ ]∑

= 







λ−λ⋅
⋅

⋅
=

n

1i
ioi

i,ci,r

oi,r xxexp
ww
yw

d      (1.31) 

 
which means that 
 

cd Λ=           (1.32) 
 
then substituting into the ODE in equation (1.8) we have: 
 

cWAdW cc =          (1.33) 
 

cWAWdWW c
1

cc
1

c
−− =        (1.34) 

 

( ) ( ) cWAWdWW c
1

cc
1

c
−− =        (1.35) 

 
cdI Λ=           (1.36) 

 
dd =            (1.37) 

 
Q.E.D. 
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Example 2. Chemical Reaction Equilibria  ( 0)x(b = ) 
 
 One very famous example of a scientific application of a system of linear ODEs is the 
analysis of chemical equilibria in a reactor, where all the reactions are reversible and first-order. 
 Consider that you have a three-component reactive mixture, all undergoing reversible 
reactions, as pictured below: 
 

A1

A2 A3

k12

k21

k32

k13

k23

k31

 
 

In this picture, the A’s are concentrations of the three species and the k’s are rate constants.  An 
example of this system is the kinetic equilibrium between para-, meta-, and ortho-xylene.   
 Now suppose we want to know what the concentration is as a function of time.  We can 
write the mass balances for each component.  There are no in and out terms (the reactor is a 
batch reactor).  There is only the accumulation term and the reaction terms.  Also, assume each 
reaction is first order in concentration. 
 

 

223332113331
3

332223112221
2

331113221112
1

AkAkAkAk
dt

dA

AkAkAkAk
dt

dA

AkAkAkAk
dt

dA

+−+−=

+−+−=

+−+−=

     (2.1) 

 
We can gather like terms and rearrange the right hand side: 
 

 

33231223113
3

33222321112
2

33122111312
1

A)kk(AkAk
dt

dA

AkA)kk(Ak
dt

dA

AkAkA)kk(
dt

dA

+−+=

++−=

+++−=

     (2.2) 
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and we change this system of equations into matrix & vector form: 
 

AX
dt
Ad

=           (2.3) 

 
where 

 

 
















=

















+−
+−

+−
=

3

2

1

32312313

32232112

31211312

A
A
A

A

)kk(kk
k)kk(k
kk)kk(

X

    (2.4) 

 
The matrix X  is singular.  It has a determinant of zero and a rank of 2.  Therefore, it has one 
zero value eigenvalue.  Nevertheless, the matrix has three distinct real eigenvalues, 321 ,, λλλ .  
Corresponding to each of these eigenvalues is a real, distinct eigenvector, 3,c2,c1,c w,w,w .  The 

eigenvectors of ∗X  are known as the eigenrows of X :  3,r2,r1,r w,w,w . 
 The solution is then: 
 

 ( ) ( )
( ) ( )[ ]∑

= 







−λ⋅⋅
⋅
⋅

=
n

1i
oii,c

i,ci,r

oi,r ttexpw
ww
Aw

tA      (2.5) 

 
In order to obtain numerical values for this problem, we would have to first obtain the 
eigenvalues, eigenvectors, and eigenrows.  This can be done numerically, using routines 
discussed in the section on numerical methods for solving systems of linear algebraic equations. 
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Example 3.  0)x(b ≠  
 
When 0)x(b ≠ , mathematicians refer to the problem as nonhomogeneous.  The terminology 
isn't important, only that we can obtain the solution.  (Still there is no x-dependence in A .) 
 
Our system has the form: 
 

 )x(byA
dx

yd
+=          (3.1) 

     
 oo y)xx(y ==          (3.2) 

    
The general solution of this nonhomogeneous equation, ( )xynh , is the sum of the solution to the 

homogeneous equation, ( )xyh , and a particular solution, ( )xyp . 

 
 ( ) ( ) ( )xyxyxy phnh +=         (3.3) 

 
In order to obtain the general analytical solution, we need to recall a good amount of linear 
algebra theory and single equation ODE theory.  We know that the solution to the problem where 

0)x(b =  is given by  
 

 ( )
( )

( ) ( )[ ]∑
= 








−λ⋅⋅
⋅

⋅
=

n

1i
oii,c

i,ci,r

oi,r
h xxexpw

ww
yw

xy     (3.4) 

 
We are going to rewrite this solution in a way that will make the following work easier.  This 
summation can be expressed in matrix form as 
 

 ( ) ( )[ ] cxexpWxy ch Λ=        (3.5) 

 
where the individual elements of the vector c  are given by  
 

 
( )

( ) ( )[ ]oi
i,ci,r

oi,r
i xexp

ww
yw

c λ
⋅

⋅
=         (3.6) 

 
and where 
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( )[ ]
( )[ ]

( )[ ]
( )[ ]

















λ

λ

λ

=Λ

xexp00

0xexp0

00xexp

xexp

3

2

1

    (3.7) 

 
Perform the matrix multiplication and dot product as indicated in equation (3.5) to see that 
equation (3.5) is equivalent to equation (3.4).  We need to remember that the value of c as given 
by (3.7) is only the value of c for the homogeneous case.  It will be different for the 
nonhomogeneous case. 
 By analogy with the single equation case, the particular solution can be expressed as  
 

 ( ) ( )[ ] )x(uxexpWxy cp Λ=        (3.8) 

 
and the nonhomogeneous solution as  
 

 ( ) ( )[ ] [ ])x(ucxexpWxy cnh +Λ=       (3.9) 

 
If we substitute nhy  into the original ODE, we have:  

 

 )x(byA
dx
yd

nh
nh +=         (3.10) 

 

 )x(byAyA
dx

yd

dx
yd

ph
ph ++=+       (3.11) 

 

 )x(byA
dx

yd
p

p +=          (3.12) 

 

 
( )[ ]

( )[ ] )x(b)x(uxexpW A
dx

)x(uxexpW d
c

c
+







 Λ=






 Λ

  (3.13) 

 
Evaluate left hand side of equation (3.13) 
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( )[ ]
( )[ ] ( )[ ] uxexpW 

dx
udxexpW

dx

)x(uxexpW d
cc

c
ΛΛ+Λ=






 Λ

  (3.14)  

 
One can manually check and confirm that  Λ  must appear after cW  and not before. 
Subsitute (3.14) back into (3.13) 
 

( )[ ] ( )[ ] ( )[ ] )x(buxexpW AuxexpW
dx
udxexpW ccc +







 Λ=ΛΛ+Λ  (3.15)  

 
Rearrange 
 

( ) ( )[ ] ( )[ ] )x(b
dx
udxexpWuxexpWWA ccc =Λ+






 ΛΛ−    (3.16)  

 
0WAW c

1
c =Λ−−          (3.17)  

 
This is the definition of the diagonalization of the matrix A  into its matrix of eigenvalues. 
 
This results in two terms dropping out of equation (3.15) which leaves us with    
       
 

( )[ ] )x(b  
dx
udxexpWc =Λ        (3.19)  

 
which is satisfyingly analogous to the single equation constraint on the derivative of u. 
 Solving equation (3.19) we find 
 

( )[ ] )x(bxexpW  
dx
ud 1

c

−







 Λ=        (3.20)  

 

( )[ ] dx )x(bxexpW  u
1

c∫
−







 Λ=       (3.21)  

 

( )[ ] dx )x(bWxexp  u 1
c

1

∫ −
−

Λ=       (3.22)  
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( )[ ] dx )x(bWxexp  u 1
c∫ −Λ−=       (3.23)  

 
This leaves the determination of c which will satisfy the initial conditions. 
 

 ( ) ( )[ ] [ ])x(ucxexpWyxy oocoonh +Λ==      (3.24) 

 

 ( )[ ] )x(uyWxexpc oo
1

c
1

o −Λ= −−
      (3.25) 

 
Thus we can rewrite our nonhomogeneous solution as  
 

 ( ) ( )[ ] ( )[ ] 



 +−ΛΛ= −−

)x(u)x(uyWxexpx expWxy oo
1

c
1

ocnh  (3.26) 

 
To check our solution we can first make sure that equation (3.26) reduces to the 
nonhomogeneous solution for a single equation 
 

 ( ) ( ) ( )











+−








=

=
−

−

∫
∫ xuxu

e
1yexy o

oxx
dx)x(ao

dx)x(a
nh    (I.28b) 

 
This solution checks because the eigenvector of a single equation is unity and the eigenvalue is 

a− .    
A second check of our solution is to make sure that equation (3.26) reduces to the 

homogeneous solution when 0)x(u = .  We can see that it does by comparing equation (3.26) 
with equation (1.14) 
 

( ) ( )[ ] o
1

cocoh yW xxexpWxy −−Λ=       (1.14) 
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Example 4.  Chemical Reaction Equilibria with addition/deletion of components   0)x(b ≠  
 
We can add constant flowrates to our system by adding a constant term to the ODEs.   
 

  

333231223113
3

233222321112
2

133122111312
1

FA)kk(AkAk
dt

dA

FAkA)kk(Ak
dt

dA

FAkAkA)kk(
dt

dA

++−+=

+++−=

++++−=

    (4.1) 

  
 
The flowrates can either be feed or effluent, depending upon the sign.  To keep the problem 
simple, let's enforce conservation of volume by stipulating that 
 

 0F
3

1i
i =∑

=
          (4.2) 

 
and we change this system of equations into matrix & vector form: 
 

FAX
dt
Ad

+=          (4.3) 

 
We know the solution to the nonhomogeneous equation is  
 

 ( ) ( )[ ] ( )[ ] 



 +−ΛΛ= −−

)t(u)t(uAWtexpt expWtA oo
1

c
1

ocnh   (4.4) 

 
The only question is the form of u. 
 
 

( )[ ] dx )x(bWxexp  u 1
c∫ −Λ−=       (3.23)  

 

Since, for this problem, b is a constant,  all the x functionality lies in ( )[ ]xexp Λ−  

 

( ) ( )[ ] bWdxxexp t u 1
c

t
−














Λ−= ∫       (4.5) 
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( ) ( )[ ] bWtexp t u 1
c

1 −−





 Λ−Λ−=        (4.6) 

 
Plugging back into the solution we find 
 

( ) ( )[ ]
( )[ ] ( )[ ]

( )[ ] 



















 Λ−Λ−





 Λ−Λ+Λ

Λ=
−−

−−−−

bWtexp

bWtexpAWtexp
t expWtA

1
c

1

1
co

1
o

1
c

1

o

cnh  

            (4.7) 
 
A complication arises because one of the eigenvalues is zero.  Thus there is no x-dependency in 
the exponential because there is no exponential.  Then we would have a term of the form 
 

( ) [ ] bWt  tu 1
c

−=          (4.8) 
 
so that we would have 
 

( ) bWU t u 1
c

−=          (4.9) 
 

( )[ ]

( )[ ]





























λ

λ−
−

λ

λ−
−

=

t00

0
texp

0

00
texp

U
2

2

1

1

    (4.10) 

 
for the case where we had three eigenvalues, the first two of which are non-zero. 
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B.  Normal Mode Analysis  of the Vibrational Spectrum of a Molecule 
 
 Consider that we want to investigate the vibrational properties of carbon dioxide, CO2.  
Our model of the molecule looks like this: 
 

O C O

spring
(k)

spring
(k)

x0,1 x0,2 x0,3

x1 x3x2  
 
 We model the interaction between molecules as Hookian springs.  For a Hookian spring, 
the potential energy, U , is  
 

 2
0 )xx(

2
kU −=          (5.1) 

 
and the force, F , is  
 
 )xx(kF 0−−=          (5.2) 
 
where k  is the spring constant (units of kg/s2), 0x  is the equilibrium displacement, and x  is the 
actual displacement. 
 When both ends of the spring are mobile we can write, for the spring that connects mass 
1 and 2: 
 

 2
1201212 )x)xx((

2
kU −−=        (5.3) 

 
 and we can write, for the spring that connects mass 2 and 3: 
 

 2
3202332 )x)xx((

2
kU −−=        (5.4) 
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 The forces are then: 
 

)x)xx((k
x
UF 12012
1

1 −−=
∂
∂

−≡  

)x)xx((k)x)xx((k
x
UF 3202312012
2

2 −−+−−−=
∂
∂

−≡    (5.5) 

)x)xx((k
x
UF 32023
3

3 −−−=
∂
∂

−≡  

 
With only a slight sleight of hand, we redefine our variables to be: 
 

 

32033

22

12011

xxx
xx

xxx

−=

=

+=

         (5.6) 

 
This eliminates the equilibrium bond distances from the calculation.  So, with this definition,  
 

321 xxx ==          (5.7) 
 

at equilibrium.  This does not affect our equations of motion because the derivatives of our 
variables before and after the transformation of the variables are the same.  Our forces become: 
 

)xx(k
x
UF 12
1

1 −=
∂
∂

−≡  

)xx(k)xx(k
x
UF 2312
2

2 −+−−=
∂
∂

−≡      (5.8) 

)xx(k
x
UF 23
3

3 −−=
∂
∂

−≡  

 
 We can write Newton’s equations of motion for the three molecules: 

 
( )

( ) ( )
( )2333O

231222C

1211O

xxkFam
xxkxxkFam

xxkFam

−−==

−+−−==

−==

     (5.9) 

 
We can generalized this to a non-symmetric linear tri-atomic molecule by writing: 
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( )
( ) ( )
( )2313333

23131212222

1212111

xxkFam
xxkxxkFam

xxkFam

−−==

−+−−==
−==

     (5.10) 

 
Knowing that the acceleration is the second derivative of the position, we can rewrite the above 
equations in matrix form as (first divide both side of all of the equations by the masses) 
 

xA
dt

xd
2

2
=           (5.11) 

 
where 
 
















=





















−

−−

−

=

3

2

1

3
13

3
13

2
13

2
1312

2
12

1
12

1
12

x
x
x

x

m
k

m
k0

m
k

m
kk

m
k

0m
k

m
k

A

     (5.12) 

 
Solving this system of second order linear differential equations yields the integrated 

equations of motion for carbon dioxide.   
We can convert the three second order ODEs into six first order ODEs as shown below.  

Take atom number one. 
 

( )1212111 xxkFam −==         (5.13) 
 

which we write as 
  

( )12122
1

2

1 xxk
dt

xdm −=         (5.14) 

 
Now we can rewrite that second order ODE as two first order ODEs. 
 

 4
1 x

dt
dx

=           (5.15) 
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( )1212
4

1 xxk
dt

dxm −=         (5.16) 

 
We can write analogous equation for the other two atoms, to come with ODEs for variables 5 
and 6.  Of course, variables 1, 2, and 3 are still the positions of the atoms.  Variables 4, 5, and 6 
are now the velocities of the atoms. 
 All of these equations are homogeneous. 
 
 Our 3x3 A matrix becomes a 6x6 matrix: 
 

 































−

−−

−=

000
000
000

m
k

m
k0

m
k

m
kk

m
k

0m
k

m
k

100
010
001

000
000
000

A

3
13

3
13

2
13

2
1312

2
12

1
12

1
12    (5.17) 

 
where the solution vector, x, is now defined as: 
 

























=

























=

3

2

1
3

2

1

6

5

4
3

2

1

x
x
x
x
x
x

x
x
x
x
x
x

x

&

&

&          (5.18) 

 
Now, clearly, we can solve this problem exactly as we solve any system of homogeneous linear 
first order ODEs.  The solution will be given as 
 

( ) ( )[ ] o
1

coch xW ttexpWtx −−Λ=       (1.14) 
 
or 
 

 ( ) ( )
( ) ( )[ ]∑

= 







−λ⋅⋅
⋅
⋅

=
n

1i
oii,c

i,ci,r

oi,r
h ttexpw

ww
xw

tx      (1.22) 
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In this problem the eigenvalues and eigenvectors are complex.  They have real and imaginary 
components.  The solution in equation (1.14) is purely real.  The imaginary contributions have 
been transformed into real components via the Euler identities.  If we have a software that can 
handle complex algebra then we can simply obtain the solution as given in equation (1.14).  
Matlab can handle this sort of thing.  However, do to round-off error, the imaginary component 
of the solution won’t cancel to be precisely zero.  Rather we will obtain imaginary components 
on the order of 10-15 (since the computer only keeps sixteen significant figures).  Therefore, we 
need to realize that these very small imaginary components have no mathematical basis.  They 
are simply the results of truncation errors. 
 
 Well we might think we have solved this problem, and we have.  However, it is 
worthwhile to investigate this problem further because some of the eigenvalues of a vibrational 
problem are complex.  They have to be; how else would be obtain the periodic trigonometric 
functions from this solution?  If we want to derive the analytical formula in terms of sines and 
cosines we can proceed further. 

From this point on, our derivation is based upon existing knowledge of the problem.  We 
will consider one broad subcase.  In this subcase,  

• the six eigenvalues constitute purely complex conjugate pairs (two of which are zero) 
• each complex conjugate pair of eigenvalues necessarily has complex conjugate 

eigenvectors.   
Knowing this, we can proceed to write .    
 

( )
( )

( ) ( )[ ]∑
= 











−λ⋅⋅
⋅

⋅
=

n2

1j
ojj,c

j,cj,r

oj,r
tt expw

ww

xw
tx     (1.22)  

 
The pre-exponential factor can very well have both real and imaginary parts 

  

 
( )

( )
( )

( )
( )

( ) iw
ww
xw

imagw
ww
xw

realw
ww
xw

j,c
j,cj,r

oj,r
j,c

j,cj,r

oj,r
j,c

j,cj,r

oj,r












⋅

⋅
⋅

+











⋅

⋅
⋅

=⋅
⋅
⋅

 

            (5.19) 
 
which allows us to write: 
 

 

( ) ( )
( ) ( )[ ]

( )
( ) ( )[ ] i tt expw

ww
xw

imag

tt expw
ww
xw

realtx

n2

1j
ojj,c

j,cj,r

oj,r

n2

1j
ojj,c

j,cj,r

oj,r

∑

∑

=

=













−λ⋅











⋅

⋅
⋅

+













−λ⋅











⋅

⋅
⋅

=

   (5.20) 
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Because (i) our pre-exponential factors are complex conjugates and (ii) the eigenvalues are 
complex conjugates, the summations can be transformed into summations over n molecules 
rather than 2n variables: 
 
 

 

( ) ( )
( ) ( )[ ] ( )[ ]

( )
( ) ( )[ ] ( )[ ] i ttiexptti expw

ww
xw

imag

ttiexptti expw
ww
xw

realtx

n

1j
ojojj,c

j,cj,r

oj,r

n

1j
ojojj,c

j,cj,r

oj,r

∑

∑

=

=


















 −λ−−−λ⋅












⋅

⋅
⋅

+


















 −λ−+−λ⋅












⋅

⋅
⋅

=

 

            (5.21) 
 
 We must recognize Euler's identities.  For the summation with the real pre-exponential 
factors: 
  

( )[ ] ( )[ ] ( )[ ]ojojoj tt cos2ttiexpttiexp −λ=−λ−+−λ    (5.22) 

 
and for the summation with the imaginary pre-exponential factors: 
 

( )[ ] ( )[ ] ( )[ ]ojojoj tt sin2ittiexptti exp −λ−=




 −λ−−−λ   (5.23) 

 
so that we see: 

 

( ) ( )
( ) ( )[ ]

( )
( ) ( )[ ]  tt sin2w

ww
xw

imag

tt cos2w
ww
xw

 realtx

n

1j
ojj,c

j,cj,r

oj,r

n

1j
ojj,c

j,cj,r

oj,r

∑

∑

=

=













−λ⋅













⋅

⋅

⋅
−













−λ⋅













⋅

⋅

⋅
=

   (5.24) 

 
Well, we have the solution.  You think we are done.  There are two catches. 
 
First, because of the nature of the system, the eigenvectors don't form an orthonormal basis set.  
Two of the eigenvectors have zeros through all of the velocity entries.  Two of the eigenrows 
have zeros through all of the position entries.  The dot product of those vectors, as needed in the 
denominator of the pre-exponential factor, is zero, so that exponential prefactor blows up.  This 
happens for only one of the three exponential prefactors.  That problem can be remedied by 
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selecting the pre-exponential factor corresponding to the problematic eigenvector,eigenrow dot 
product to satisfy the initial positions conditions.  This works fine. 

Second, these equations for ( )tx  as we have written them are indeed solutions to  
 

xA
dt

xd
2

2
=          (5.25) 

 
However, they may not provide the solution to certain types of initial conditions.  There is 
another family of solutions given by  
 
 ( ) ( ) 01 ktktxtx ++=  
 
where the k's are vectors of constants.  These additional terms will be needed to satisfy the initial 
conditions when the total momentum of the molecule is non-zero, i.e. in addition to the vibration, 
there is a non-zero translational component to the motion.   

0k  and  1k  are going to turn out to be non-zero only if the initial velocities of the atoms 
are specified such that the total momentum of the molecule is non-zero.  The initial momentum 
of the molecule is 
 

 ∑
=

==
n

1j
oojj mom)tt(xm &  

 
By the conservation of momentum the total momentum won't change.  This total momentum 
translates into a uniform center of mass motion: 
 

 ∑ ∑
= =

===
n

1j

n

1j
ojjojcm )tt(xmmommx &&  

 

 

∑

∑

=

=
=

= n

1j
j

n

1j
ojj

cm
m

)tt(xm
x

&

&   

 
It can be shown that the value for 0k  is given by  
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&

&
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It can be shown that our value for 1k  is given by  
 

























=

























=

0
0
0

x
x
x

k
k
k
k
k
k

k cm

cm

cm

6,1

5,1

4,1
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2,1

1,1

1
&

&

&

 

 
Why didn't these two additional terms enter naturally in our formulation, instead of being added 
in as an afterthought?  My guess is because we are engineers who patch things up better than we 
know how to design flawlessly a priori. 
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III.  Codification of the analytical method for numerical solution     
 
 These gruesome  derivations given above are truly unnecessary.  A simple Runge-Kutta 
algorithm will yield the solution with only a few minutes work.  However, the Runge-Kutta 
method would not have given us the functional form of the solution, which is often times all that 
we are after. 
  
 The analytical solution techniques given above can be coded up as written. 
 
 
The purpose in giving two forms of the solution, for example, for the system of linear 
homogeneous equations,  
 

( ) ( )[ ] o
1

coch xW ttexpWtx −−Λ=       (1.14) 
 
and 
 

 ( ) ( )
( ) ( )[ ]∑

= 







−λ⋅⋅
⋅
⋅

=
n

1i
oii,c

i,ci,r

oi,r
h ttexpw

ww
xw

tx      (1.22) 

 
is to make codification of the solutions simple for any type of software platform.  A language 
like FORTRAN is going to favor the use of equation (1.22).  However, a platform like 
MATLAB, which can handle matrix multiplication implicitly would be much easily solved using 
equation (1.14).  In fact, here is an example of solving the chemical reaction equilibria problem 
above using MATLAB.  The code is less than a page long and completely solves and plots the 
problem. 
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% input 
k12 = 0.50; 
k21 = 0.25; 
k13 = 0.20; 
k31 = 0.05; 
k23 = 0.30; 
k32 = 0.15; 
A = [ (-k13-k12), k21, k31; k12, (-k21-k23), k32; k13, k23, (-
k31-k32)]; 
yo = [1.0/3.0;  1.0/3.0; 1.0/3.0]; 
to = 0.0; 
tf = 10.0; 
n = max(size(A)); 
% compute eigenvalues and eigenvectors 
[wcol,lambdac] = eig(A); 
wcolinv = inv(wcol); 
% set up discretized solution grid 
npoints = 1000; 
dt = (tf-to)/npoints; 
for i = 1:1:npoints+1 
   tp(i) = (i-1)*dt +to; 
end 
% calculate solution 
explambda = zeros(n,n); 
yp = zeros(n,npoints); 
for i = 1:1:npoints+1 
   for j = 1:n 
      explambda(j,j) = exp(lambdac(j,j)*(tp(i) - to) ); 
   end 
   yp(:,i) = wcol*explambda*wcolinv*yo; 
end 
%plot 
for j = 1:1:n  
  if (j==1) 
     plot (tp,yp(j,:),'g-'), xlabel( 't' ), ylabel ( 'y' ) 
  elseif (j==2) 
     plot (tp,yp(j,:),'r-'), xlabel( 't' ), ylabel ( 'y' ) 
  elseif (j==3) 
     plot (tp,yp(j,:),'b-'), xlabel( 't' ), ylabel ( 'y' ) 
  end 
  hold on 
end 
hold off 
  
 


