Numerical Techniques for the Evaluation of Multi-Dimensional Integral Equations

David Keffer
Department of Chemical Engineering
University of Tennessee, Knoxville
September 1999

Table of Contents

1. Numerical Derivation of the trapezoidal rule for the 2-D case with constant integration limits 1
2. Numerical Derivation of the trapezoidal rule for the 3-D case with constant integration limits 3
3. Numerical Derivation of the trapezoidal rule for the 2-D case with variable integration limits 5
4. Numerical Derivation of the Simpson’s 1/3 rule for the 2-D case with constant integration limits 7
1. Numerical Derivation of the trapezoidal rule for the 2-D case with constant integration limits

In Section 4.6 of “Numerical Recipes in Fortran 77”, second edition, you can find a brief discussion of when to use different types of numerical methods for evaluating multidimensional integrals.

For the purposes of this course, I am going to show you how to extend the one-dimensional integral evaluation to n-dimensional integral evaluation. This techniques relies upon you have rather simple boundaries to the integral.

For integrals in one dimension, we could start with something simple like the trapezoidal rule.

$$\int_{a}^{b} f(x)dx \approx \frac{h}{2} \left[f(a) + f(b) + 2\sum_{i=2}^{n_x} f(x_i) \right]$$ (1.1)

Now if we have a 2-D integral we write this as:

$$I_{2D} = \int_{x_0}^{x_f} \int_{y_0}^{y_f} f(x,y)dydx = \int_{x_0}^{x_f} g(x)dx$$ (1.2)

where

$$g(x) = \int_{y_0}^{y_f} f(x,y)dy \approx \frac{h_y}{2} \left[f(x,y_0) + f(x,y_f) + 2\sum_{j=2}^{n_y} f(x,y_j) \right]$$ (1.3)

Substituting the discretized approximation for g(x) in equation (1.3) into equation (1.2) we have

$$\int_{x_0}^{x_f} \int_{y_0}^{y_f} f(x,y)dydx \approx \frac{h_y}{2} \int_{x_0}^{x_f} \left[f(x,y_0) + f(x,y_f) + 2\sum_{j=2}^{n_y} f(x,y_j) \right]dx$$ (1.4)

Well, we can repeat the application of the trapezoidal rule:

$$I_{2D} \approx \frac{h_y}{2} \left[\frac{h_x}{2} \left[f(x_0,y_0) + f(x_0,y_f) + 2\sum_{i=2}^{n_x} f(x_0,y_i) \right] \right]$$

$$+ \frac{h_y}{2} \left[\frac{h_x}{2} \left[f(x_f,y_0) + f(x_f,y_f) + 2\sum_{i=2}^{n_x} f(x_f,y_i) \right] \right]$$

$$+ 2\sum_{j=2}^{n_y} \frac{h_y}{2} \left[f(x_0,y_j) + f(x_f,y_j) + 2\sum_{i=2}^{n_x} f(x_i,y_j) \right]$$ (1.5)

Now we can simplify this as much as possible,
If we add up the number of function evaluations, we can see that we have $n_x n_y$ function evaluations. If $n_x = n_y = n$, then we have n^2 function evaluations for a 2-D integral. If we need to evaluate an m-dimensional integral, then we will have n^m function evaluations.
2. Numerical Derivation of the trapezoidal rule for the 3-D case with constant integration limits

Now if we have a 3-D integral we write this as:

\[I_{3D} = \int_{x_0}^{x_f} \int_{y_0}^{y_f} \int_{z_0}^{z_f} f(x, y, z) \, dz \, dy \, dx = \int_{x_0}^{x_f} h(x) \, dx \]
(2.1)

where

\[h(x) = \int_{y_0}^{y_f} \int_{z_0}^{z_f} f(x, y, z) \, dz \, dy = \int_{y_0}^{y_f} g(x, y) \, dy \]
(2.2)

where

\[g(x, y) = \int_{z_0}^{z_f} f(x, y, z) \, dz \]
(2.3)

Using the trapezoidal rule approximation:

\[g(x, y) = \int_{z_0}^{z_f} f(x, y, z) \, dz \approx \frac{h_z}{2} \left[f(x, y, z_0) + f(x, y, z_f) + 2 \sum_{i=2}^{n_z} f(x, y, z_i) \right] \]
(2.4)

Substituting the discretized approximation for \(g(x, y) \) from equation (2.4) into equation (2.2) we have

\[h(x) = \int_{y_0}^{y_f} \int_{z_0}^{z_f} f(x, y, z) \, dz \, dy = \int_{y_0}^{y_f} \frac{h_z}{2} \left[f(x, y, z_0) + f(x, y, z_f) + 2 \sum_{i=2}^{n_z} f(x, y, z_i) \right] dy \]
(2.5)

Well, we can repeat the application of the trapezoidal rule:

\[h(x) = \frac{h_y}{2} \left[f(x, y_0, z_0) + f(x, y_0, z_f) + 2 \sum_{i=2}^{n_y} f(x, y_0, z_i) \right] + \frac{h_z}{2} \left[f(x, y_f, z_0) + f(x, y_f, z_f) + 2 \sum_{i=2}^{n_z} f(x, y_f, z_i) \right] + 2 \frac{h_z}{2} \sum_{i=2}^{n_z} \left[f(x, y_0, z_i) + f(x, y_f, z_i) + 2 \sum_{j=2}^{n_y} f(x, y_j, z_i) \right] \]
(2.6)

Now we can simplify this as much as possible,

\[h(x) \approx \frac{h_y h_z}{4} \left[f(x, y_0, z_0) + f(x, y_0, z_f) + f(x, y_f, z_0) + f(x, y_f, z_f) + 4 \sum_{j=2}^{n_y} \sum_{i=2}^{n_z} f(x, y_j, z_i) + 2 \sum_{i=2}^{n_z} \left[f(x, y_0, z_i) + f(x, y_f, z_i) \right] + 2 \sum_{j=2}^{n_y} \left[f(x, y_j, z_0) + f(x, y_j, z_f) \right] \right] \]
(2.7)
Now we can apply the trapezoidal rule one more time:

\[
I_{3D} = \frac{h_x h_y h_z}{2^3} \left[\left\{ f(x_0, y_0, z_0) + f(x_0, y_0, z_1) + f(x_0, y_1, z_0) + f(x_0, y_1, z_1) + \frac{1}{2} \sum_{i=2}^{n_x} \left[f(x_0, y_i, z_0) + f(x_0, y_i, z_1) \right] \right\} + 2 \sum_{j=2}^{n_y} \left[f(x_j, y_0, z_0) + f(x_j, y_0, z_1) \right] + 2 \sum_{j=2}^{n_y} \left[f(x_j, y_1, z_0) + f(x_j, y_1, z_1) \right] + 4 \sum_{j=2}^{n_y} \sum_{j=2}^{n_y} f(x_j, y_j, z_0) + f(x_j, y_j, z_1) \right]
\]

which if we really are bored ten minutes to five on a Wednesday evening, we can rearrange as:

\[
I_{3D} = \frac{h_x h_y h_z}{2^3} \left[\left\{ f(x_0, y_0, z_0) + f(x_0, y_0, z_1) + f(x_0, y_1, z_0) + f(x_0, y_1, z_1) \right\} + \frac{1}{2} \sum_{i=2}^{n_x} \left[f(x_0, y_i, z_0) + f(x_0, y_i, z_1) \right] + \frac{1}{2} \sum_{j=2}^{n_y} \left[f(x_j, y_0, z_0) + f(x_j, y_0, z_1) \right] + \frac{1}{2} \sum_{j=2}^{n_y} \left[f(x_j, y_1, z_0) + f(x_j, y_1, z_1) \right] + 4 \sum_{j=2}^{n_y} \sum_{j=2}^{n_y} f(x_j, y_j, z_0) + f(x_j, y_j, z_1) \right]
\]

This is the explicit form of the trapezoidal rule applied in 3-dimensions, when the limits of integration are constant.
3. Numerical Derivation of the trapezoidal rule for the 2-D case with variable integration limits

Now if we have a 2-D integral with variable limits of integration, we write this as:

\[
I_{\text{2D}} = \int_{x_0}^{x_f} \int_{y_0(x)}^{y_f(\cdot)} f(x, y) \, dy \, dx = \int_{x_0}^{x_f} g(x) \, dx
\]
(3.1)

where

\[
g(x) = \frac{y_f(x) - y_0(x)}{2} \left[f(x, y_0(x)) + f(x, y_f(x)) + 2 \sum_{i=2}^{n_y(x)} f(x, y_i(x)) \right]
\]
(3.2)

The number of y-intervals, \(n_y(x) \), is now a function of x because the size of the y-range of integration is a function of x. Substituting the discretized approximation for \(g(x) \) in equation (3.2) into equation (3.1) we have

\[
\int_{x_0}^{x_f} \int_{y_0(x)}^{y_f(\cdot)} f(x, y) \, dy \, dx = \int_{x_0}^{x_f} \frac{h_y}{2} \left[f(x, y_0(x)) + f(x, y_f(x)) + 2 \sum_{i=2}^{n_y(x)} f(x, y_i(x)) \right] \, dx
\]
(3.3)

Well, we can repeat the application of the trapezoidal rule:

\[
I_{\text{2D}} = \frac{h_x}{2} \left[\frac{h_y}{2} \left[f(x_0, y_0(x_0)) + f(x_0, y_f(x_0)) + 2 \sum_{i=2}^{n_y(x_0)} f(x_0, y_i(x_0)) \right] + \frac{h_y}{2} \left[f(x_1, y_0(x_1)) + f(x_1, y_f(x_1)) + 2 \sum_{i=2}^{n_y(x_1)} f(x_1, y_i(x_1)) \right] \right]
\]
(3.4)

Now we can simplify this as much as possible,

\[
I_{\text{2D}} = \frac{h_x h_y}{4} \left[f(x_0, y_0(x_0)) + f(x_0, y_f(x_0)) + f(x_1, y_0(x_1)) + f(x_1, y_f(x_1)) + 2 \sum_{i=2}^{n_y(x_0)} f(x_0, y_i(x_0)) + \sum_{i=2}^{n_y(x_1)} f(x_1, y_i(x_1)) \right] + \sum_{j=2}^{n_x(x_0)} \sum_{i=2}^{n_y(x_j)} f(x_j, y_i(x_j))
\]
(3.5)
Let’s do an example. Let’s integrate \(f(x, y) = cxy \) over the range \(0 \leq x \leq 1 \) and \(0 \leq x \leq y \). Let’s do it analytically first:

\[
I_{2D} = \int_{x_0}^{y_f} \int_{y_0}^{x} f(x, y) \, dy \, dx = \int_{x_0}^{1} cxy \, dy \, dx = \int_{0}^{1} \frac{cxy^2}{2} \, dx = \frac{cx^2}{8} \bigg|_{0}^{1} = \frac{c}{8}
\]

(3.6)

Now let’s do it analytically with \(\Delta x = \Delta y = h = 0.1 \) \(c = 2 \)

<table>
<thead>
<tr>
<th>i</th>
<th>x</th>
<th>yo(x)</th>
<th>yf(x)</th>
<th>ny(x)</th>
<th>f(x,yo)</th>
<th>f(x,yf)</th>
<th>sum(f(x,y))</th>
<th>integral(x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
<td>0</td>
<td>0.1</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.01</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0</td>
<td>0.2</td>
<td>2</td>
<td>0</td>
<td>0.4</td>
<td>0.4</td>
<td>0.02</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>0</td>
<td>0.3</td>
<td>3</td>
<td>0</td>
<td>0.6</td>
<td>0.6</td>
<td>0.042</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
<td>0</td>
<td>0.4</td>
<td>4</td>
<td>0</td>
<td>0.8</td>
<td>0.8</td>
<td>0.076</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
<td>0</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
<td>0</td>
<td>0.6</td>
<td>6</td>
<td>0</td>
<td>1.2</td>
<td>1.2</td>
<td>0.21</td>
</tr>
<tr>
<td>7</td>
<td>0.7</td>
<td>0</td>
<td>0.7</td>
<td>7</td>
<td>0</td>
<td>1.4</td>
<td>1.4</td>
<td>0.322</td>
</tr>
<tr>
<td>8</td>
<td>0.8</td>
<td>0</td>
<td>0.8</td>
<td>8</td>
<td>0</td>
<td>1.6</td>
<td>1.6</td>
<td>0.472</td>
</tr>
<tr>
<td>9</td>
<td>0.9</td>
<td>0</td>
<td>0.9</td>
<td>9</td>
<td>0</td>
<td>1.8</td>
<td>1.8</td>
<td>0.666</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>10</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td>0.2405</td>
</tr>
</tbody>
</table>

The numerical solution is \(I_{2D} = 0.2405 \) compared to the exact solution, \(I_{2D} = 0.25 \)
4. Numerical Derivation of the Simpson’s 1/3 rule for the 2-D case with constant integration limits

Now if we have a 2-D integral we write this as:

\[
I_{2D} = \int_{x_0}^{x_f} \int_{y_0}^{y_f} f(x, y) \, dy \, dx = \int_{x_0}^{x_f} g(x) \, dx
\]

(4.1)

where

\[
g(x) = \frac{y_f}{y_0} \left(f(x, y_o) + f(x, y_f) + 4 \sum_{i=2,4,6}^{n_x-1} f(x, y_i) + 2 \sum_{i=3,5,7}^{n_x-2} f(x, y_i) \right)
\]

(4.2)

Substituting the discretized approximation for \(g(x) \) in equation (4.2) into equation (4.1) we have

\[
I_{2D} = \int_{x_0}^{x_f} \left(f(x, y_o) + f(x, y_f) + 4 \sum_{i=2,4,6}^{n_x-1} f(x, y_i) + 2 \sum_{i=3,5,7}^{n_x-2} f(x, y_i) \right) \, dx
\]

(4.3)

Well, we can repeat the application of the trapezoidal rule:

\[
I_{2D} = \frac{h_x}{3} \left(f(x_o, y_o) + f(x_o, y_f) + 4 \sum_{i=2,4,6}^{n_x-1} f(x_o, y_i) + 2 \sum_{i=3,5,7}^{n_x-2} f(x_o, y_i) \right)
\]

\[
+ \frac{h_y}{3} \left(f(x_f, y_o) + f(x_f, y_f) + 4 \sum_{i=2,4,6}^{n_y-1} f(x_f, y_i) + 2 \sum_{i=3,5,7}^{n_y-2} f(x_f, y_i) \right)
\]

\[
+ 4 \sum_{j=2,4,6}^{n_y-1} \frac{h_y}{3} \left(f(x_j, y_o) + f(x_j, y_f) + 4 \sum_{j=2,4,6}^{n_y-1} f(x_j, y_i) + 2 \sum_{i=3,5,7}^{n_y-2} f(x_j, y_i) \right)
\]

(4.4)

\[
+ 2 \sum_{j=3,5,7}^{n_y-2} \frac{h_y}{3} \left(f(x_j, y_o) + f(x_j, y_f) + 4 \sum_{j=2,4,6}^{n_y-1} f(x_j, y_i) + 2 \sum_{i=3,5,7}^{n_y-2} f(x_j, y_i) \right)
\]

Now we can simplify this as much as possible,
\[l_{2D} = \frac{h_x h_y}{9} \left\{ \begin{array}{c} f(x_0, y_0) + f(x_0, y_f) + f(x_f, y_0) + f(x_f, y_f) \\ + 2 \left[\sum_{i=3,5,7}^{n_x-2} [f(x_0, y_i) + f(x_i, y_0)] + \sum_{j=3,5,7}^{n_y-2} [f(x_j, y_0) + f(x_j, y_f)] \right] \\ + 4 \left[\sum_{i=2,4,6}^{n_x-1} [f(x_0, y_i) + f(x_i, y_0)] + \sum_{j=2,4,6}^{n_y-1} [f(x_j, y_0) + f(x_j, y_f)] \right] \\ + 8 \left[\sum_{i=2,4,6}^{n_x-2} \sum_{j=3,5,7}^{n_y-2} f(x_j, y_i) + \sum_{j=3,5,7}^{n_y-2} \sum_{i=2,4,6}^{n_x-2} f(x_j, y_i) \right] \\ + 4 \sum_{j=3,5,7}^{n_y-1} \sum_{i=3,5,7}^{n_x-2} f(x_j, y_i) + 16 \sum_{j=2,4,6}^{n_y-1} \sum_{i=2,4,6}^{n_x-2} f(x_j, y_i) \end{array} \right\} \]