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Thermodynamic Properties of a single component fluid

Part 1
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Introduction

For a single-component, single-phase fluid at an arbitrary thermodynamic equation of state, we choose to
define the state in terms of eight thermodynamic variables:

pressure P pascals
temperature T Kelvin

molar volume \Y meters’/mole
internal energy U Jouless/mole
enthalpy H Joules'/mole
entropy S Joulessmole/K
Gibbs free energy G Joules'/mole
Helmholtz free energy A Joules'/mole

We have eight unknowns. We need to specify or define these with eight equations. From the phase rule, we know
we can specify T and P independently. We use an equation of state to obtain the molar volume. We use a heat
capecity, C, or C,, to define either H or U. This gives us four of the variables. We still need four more pieces of
information. Three of these are thermodynamic relations:

H=U+PV (1)
A=U-TS @)
G=H-TS 3)

Now we are lacking only one piece of information, to completely define all variables. This last piece of
information is the entropy of the fluid at some reference state.

We will now proceed to demonstrate how these eight pieces of information lead to a complete description
of the material.
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A. Equation of State
A fluid can be described by an equation of state. Take for example, the van der Waal’ s equation of state.

P=—- = (4.9)

Thisis acubic equation of state because we can rearrange the equation as a cubic polynomial in molar volume:
3 2 —
PV3 +(- RT- bP)VZ4 +aV- ba=0 (4.b)

Since this equation is a cubic polynomial, it has three roots for given valuesof P, T, R, a, and b. Each root has
units of molar volume. Below the critical temperature, all three roots of the equation are real. Above the critical
temperature, one of the roots is real and the other two roots are complex conjugates.

For agivenV and T, the equation yields 1 pressure. For agiven V and P, the equation yields 1 T, which
we can explicitly see from

a
NE

I-I-O:

: (4.0

T:%bg +

Q

There are two constants in the van der Waal’s equation of state, aand b. b is the hard-sphere volume of asingle
molecule, multiplied by Avogadro’s number. b has units of volume. ais an energetic attraction between
molecules. It has units of energy-volume. For avan der Waal’s gas a and b can be obtained from the critical
properties.

27R?T?
a=Z2" "~ ¢ ®)
64P,

and

_RT¢
8P

(6)

For Argon (T, =150.8K, P, =4.874 ><106Pa),wehavevalu%ofaandb

a =0.13606 Jxm°

m3
b=3.2154%07°
mole
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B. Changesin Thermodynamic Properties

The propertiesU, H, S, G, and A should be considered as mathematical functionsof T, P, and V. If we
know two of the three variablesin the set T, P, and V, then we can obtain all the other unknown properties, given
that we know areference value. If we don’t know a reference value, then we can obtain changes in these
properties.

As an example consider the arbitrary function, f(T,P). We can express this function exactly as

HT.P) = H(Trof Pret) + O *ﬂ—f(T Pret)Q gy 4 0 PO 4p 7.9
Tref % Pref © gT
or
H(T.P) = f(Tet.Pret) * O fﬂf(T P)O 4T+ () Eé”(Tf—;f’P)Q P (7.)
Tref e ZP Pref © 1

These two statements differ only in the order in which we integrated the functions. Both are true and form the
fundamental basis by which we calculate changes in thermodynamic properties. If we replace the function

f(T,P) with the enthalpy H(T,P), then we can compute the enthalpy at any temperature and pressure assuming
we know its value at some reference conditions.

E AHTPe)0 7, 0 géTH(Tl, P

b dP (8)
Tref % Pref © ar

H(Tl’Pl) H(Tref’ ref)+

On the other hand, if we want to know the change in enthalpy in moving from (Tq,P;) to (T5,P5) then
we can consider (T1,P;) asour reference state, and evaluating equation (7.d) yields:

H(T2,P2) =H(Ty,P) + O ;ﬂH(T TP g 4 OEGT—H(TZ )0 4p
T2

DH =H(T,,P;) - H(Ty,Py) = ﬂ—H(T Pl)o dT + Oﬁ—H(TZ P)o dP (9)
Tle % Ple

Now, all we are missing isthe functional form of the partial derivatives. If we only had atable that would tell us
what the partial derivatives, then all we would have to do is integrate the functions (either analytically or
numerically) and we would be able to calculate the change in enthal py from any one thermodynamic state to
another.

Oh, Lucky us! Such atable exists. Thermodynamics has been around a long time and a lot of good minds
have scrutinized it. One such mind belonged to P.W. Bridgeman. He devised a table by which he could rapidly
obtain any thermodynamic partial derivative for a pure component fluid of the form:

X
Y o
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Since we have 8 different variables (T, P, V, U, H, S, G, & A) and three ways they can be entered into X, Y, and Z,
we have atotal of 8% = 512 different partial derivatives. The Bridgeman Tables can give us any of these partials,
although some are not as useful as others.

The Bridgeman Tables require (i) an equation of state, (ii) an expression for the heat capacity (either , C,
or C,) and asingle reference entropy at some (Tyef,Pref) . These three pieces of data are the absolute minimum

necessary to determine these partial derivatives.

Let's say we are using a pressure explicit equation of state (e.g. van der Waal’s EOS) and we have C,.
We select that table. If we want the enthalpy change with respect to temperature at constant pressure, we then
proceed to the page marked pressure, because we are holding pressure constant. 1n the Bridgeman tables:

aHo _ (H)p _ &MV

g (M o

=Cp (10)

If we want the enthalpy change with respect to pressure at constant temperature, we find:

ngﬁg adTIOO ngIOO
aéﬂgz(‘ﬂH)T: el gy e‘ﬂVzr ellToy |

&Por (P &g o 0
e'ﬂV or eV or

(11)

From the Bridgeman Tables, we can get the partial derivative of any variable in terms of any other variable,
holding any variable constant.

The solutions are given in terms of only P, T, V, C,,, and derivatives which are easy to obtain from the
equation of state, 8&&9 and ?EQ . For certain partial derivatives, we also need a reference entropy (as we

elll ay eV gr

will see later).

So, if we want the enthalpy for an arbitrary change in temperature and pressure, we substitute equations
(10) and (11) into equation (9).

T Py T ?EQ
DH = H _ 2 2 2e‘ﬂTﬂ\/
= (T2,P2)- H(T_']_’Pl)_ d:p(T,Pl)dT'f' AP 6 + VdP (12
T1 PL ¢+
eV gr

If we want to determine the change in temperature as we go from state (Tl, Pl) through an isentropic
throttling valve to state (Tp = ?,P5), then we have:

&b 0 TP o
3 ST o T
f:d]—Tg _(ms . &Te, _ &gy (13)
éPes (P)s Crgpo o &R0
T éVer e'”VﬂT

4
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= Py Ti s?}dﬂg
) > liso- -
DI =Ty-T; = E;é]—T— dP = - —eﬂT"ﬂ\/dP (14)
Pl elP e P Cp?ﬁg
eV or

In equation (14), Tigo- g isadummy variable that identifies the temperature that corresponds to the dummy
variable of integration P, along an isentropic process.

If we want to determine the change in temperature as we go from state (Tl, Pl) through an isenthal pic
turbine to state (To = ?,P5 ), then we have:

ad]po ny gﬂpo éad1po
gé]_TQ :(‘HT)H _ e'ﬂTﬂ\/ eVear _ eMMagy, V. a5
&Pga,  (TP)y &R0 c,&Po  Cp
eV gr e'ﬂVﬂr
P P g Ti H?ﬂp@ v
) .. 2€ liso-HG e+~ u
DT =T,- Ty = (‘)?_;d]—TQ dP = & ellay VvV gp (16)
TP ay p, & &P 9 Cpu
é eV gr a

We will see that we have all the information we need from the equation of state and the heat capacity to determine
the functional form of the integrand.

In the sections that follow, we will derive the equations of change for four common processes for an
arbitrary equation of state. After that, we will apply the results to three specific equations of state.
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C.1. Isothermal Expansion/Compression for Arbitrary Equation of State

In this section we are going to provide formulae, obtained from the Bridgeman Tables, for the changein
V,U, H, S, G, and A, dueto an isothermal expansion/compression. In this problem, we move from state (Tl, Pl)

to state (T1,P»). Therelevant formulae in the Bridgeman Tables are of the form:

X0
TP or
whereX canbeT,P,V,U,H, S G, and A.
i. Temperature

Let’s start with the simplest one, temperature. When we hold temperature constant, there is no changein
pressure.

HATo _
g'ﬂp or
ii. Pressure

When we vary pressure, the change in pressure is defined as DP =P, - P

&p O

g'ﬂpm -

p
dP = GjP:PZ Pl

P2 po
DP°P,-P = 9 ;T
Py

O

iii. Volume
If weisothermally vary pressure, we have for the change in volume

(Vo -1 2
g‘ﬂpm (pk _gbo  ebg
eNVegr elVgr
Thisisan identity. We can obtain this derivative, ?EQ , from the equation of state.
eV or
Vo Vo .. Vo
VO Vo-Vi= §—sdP= V2 gp= gV =V,-V,
V1 ?ﬁg V1 ﬂpm— V1
eV or



We then solve the equation of state for V4 and
pressure.

iv. Internal Energy
From the Bridgeman Tables we have:
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V5 because we know the initial and final temperature and

p- TR G
v _()y _7 ey
eTP gr (‘HP)T 8dTpo
e'ﬂVﬂr
yielding an internal energy change of
Hpo U
Pzeo Tlgﬂ—ﬁ)—
DU = U(Tq,P U(Tq,Py) = e—UdP
(Ty,P2) - U(Ty,Py) = p(l)e_adTpo g
§ évor §
v. Enthalpy
From the Bridgeman Tables we have:
r&be \&@Po  #po
Ll () S, Ve _ _18MTay
éPgr (TP . g@po o o
eV gr eV or
yielding an enthalpy change of
é &Po u
Py é 8ﬁg\, u
DH =H(T4,P H(Tq,Py) = er. +VUdp
(T1,P2) - H(Ty,Py) = P?Algd"DQ G
g éNgr g
vi. Entropy
From the Bridgeman Tables we have:
adnoo adﬂoo
S 9 _(1S) _ &gy &gy
&MPor (IPh o elbg
eVagr elVg

yielding an entropy change of
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vii. Gibbs Free Energy
From the Bridgeman Tables we have:

2Gs _ (1G); _ eﬂvé’r _

Pa (P adpo

yielding a Gibbs Free Energy change of

P2
DG = G(Tl, P2) - G(Tl, Pl) = OV dP
P

viii. Helmholtz Free Energy
From the Bridgeman Tables we have:

A Y _(Ak_ p
Por (P)r o
eV or

yielding a Helmholtz Free Energy change of

P2
DA = A(T,P,) - A(Ty,Pp) = oﬁ dp
Pi-¢c— =
g'ﬂV or
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C.2. Isothermal Expansion/Compression for 1deal Gas

The Ideal Gas has an equation of state

PV =RT or P=E
Vv

and, for a monatomic ideal gas, it has a heat capacity

bo _ RT
eV er V2
afps _R
ellMagy V
i. Temperature
DT:T2- T1:O
ii. Pressure
DP:P2- Pl
iii. Volume
Ave __ 1 _ 1 _ VZ_ RT
S0 & #po _RTRT p
eV gr V2
V2
DVOVZ-V_—]_: O-R—gdP:E-E:VZ-Vl
Vi P P2 P1

iv. Internal Energy
R

) ST

@9 :p V:p-p:O

&Ps RT RT
V2 V2

DU =U(Ty,P2) - U(T3,P) =0
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v. Enthalpy
STERO PO R
géﬂg - el ﬂV”T_T V_iy=-v+v=0
eTP gr &P g RT

&V gr 2

DH =H(Ty,P2) - H(Ty,Pp) =0

vi. Entropy
- @ho R
86180 _('"S)T __ ey _ v __V_R
éPgr (P dpo _RT T P
eV er \%
P2 R a,0 _ aP 0
DS = S(Ty,P,) - S(Ty,Py) = (‘)-—dP—-Rlng—2:=Rlng—1i
P T P1g P2 o
vii. Gibbs Free Energy
ad]po
é[_Gg :—eﬂVﬂr V = RT
EPor o P
eV or
P2RT
DG = G(Tl,Pz) G(Tl,Pl)— o—dp RTln
Plz
P
viii. Helmholtz Free Energy
AA6 . p _p _RT
&Por _gpo RT P
Vg V2
P2RT
DA = A(Ty,Py)- A(Ty,P)) = 0— dP = RTINZ
Plz
P1

10
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Example C.2. Numerical Example: Isothermal Expansion/Compression for 1deal Gas

Let'sisothermally compress Argon from (T4,P;) = (500 K,101325 Pa) to state
(T1,P>) = (500K, 202650 Pa) . We will assume Argon is an Ideal Gas.

We can write asimple code in MATLAB, which implements the equations in Section C.2. This has been done.
The output of the code is as follows:

Single Component, single phase fluid: Ar

Model: Ideal Gas

Initial Condition: T =500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102640e-002 (m"3/mol)

Final Condition : T =500.000000 (K) and P = 2.026500e+005 (Pa) V = 2.051320e-002 (m"3/mol)
Heat Capacity  : Cp(To,Po) = 2.078500e+001 Cp(Tf,Pf) = 2.078500e+001 (J/mol/K)

Heat Capacity  : Cv(To,Po) = 1.247100e+001 Cv(Tf,Pf) = 1.247100e+001 (¥mol/K)

Changes due to Change in Temperature

Delta U = 0.000000e+000 (J/mol) Delta H = 0.000000e+000 (Jmol) Delta S = 0.000000e+000 (J/mol/K)
Delta G = 0.000000e+000 (Jmol) Delta A = 0.000000e+000 (Jmol)

Changes due to Change in Pressure

Delta U = 0.000000e+000 (Jmol) Delta H = 0.000000e+000 (Jmol) Delta S = -5.762826e+000 (Jmol/K)
Delta G = 2.881413e+003 (Jmol) Delta A = 2.881413e+003 (J/mol)

Total Changes

Delta U = 0.000000e+000 (Jmol) Delta H = 0.000000e+000 (Jmol) Delta S = -5.762826e+000 (Jmol/K)
Delta G = 2.881413e+003 (Jmol) Delta A = 2.881413e+003 (J/mol)

Anideal gas does not have achangein U or H when undergoing an isothermal compression. The Changein
entropy is negative, because the gas is more dense at the final state. The values of DG and DA are the same. This
isjust a chance occurrence. For other gases undergoing this process and for an ideal gas undergoing a different
process, this would not be the case.

11
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C.3. Isothermal Expansion/Compression for van der Waal’s Gas

The van der Waal’s Gas has an equation of state

= — (4.9
V-b 2
and, for a monatomic vdW gas, it has a heat capacity

_5885Pv3- Va+6ab9
2%pPv3- va+2ab 5

Cp

This functional form of the heat capacity was derived using statistical mechanics. It cannot be derived using
classical thermodynamics. If you are interested in the derivation, you might just have an inclination to be a
statistical thermodynamicist/molecular modeler and you ought to take a course in statistical mechanics.

The only necessary derivatives of the equation of state are:

adpo . _RT_ 2a
eVer  (V-bP? V3
ps _ R
gﬂTgé,v V-b

i. Temperature

DT:T2-T1:O

ii. Pressure
DP :Pz- Pl
iii. Volume
AVO _ 1 _ 1
e apo . RT _2a
éVgr  (v-b V3
P2 1
DV©° V,-V,= G dP
_ RT _ 2a
(V-b)? V3

Thisintegral isnot easily evaluated analytically. Instead, we evaluate the integral numerically. When we
discretize the range of integration, we evaluate the integrand at each point. We' ve discretized along the pressure,
so we know the values of P. Our system isisothermal so we know the value of T. The value of V at each point,

12
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must be obtained by solving the vdwW EOS, and selecting the root that corresponds to the phase which we arein.
These comments apply to the integrals involved in abtaining the changesin U, H, S, G, and A aswell.

iv. Internal Energy

ap o R
p-T¢ =+ -
AUy - &y . P Tyl
eﬂPéT adp o RT 2a
Vg (V-bP VB
gr  (V-bf Vv
é u
Py € D-TVRb u
= - = A€ - u
DU =U(Ty,P2) - U(Ty,Py) Oz RT >a adP

Pl,\i- —
dv-of Ve

v. Enthalpy
adp 0
L Te .~ TR
dHo _ &MMay o veb .y
ePegr &p0 SR, 2
eV ar (V-bf Ve
é u
P2§ VRb lil
= - = 0% - i
DH =H(Ty,P2) - H(Ty,Py) O RT 2a +VudP
Pra- RN
& (V-b) v a
vi. Entropy
. R
51_89 = eﬂTﬂ\/ =- V-b
éPgr _aflpg ~ RT  2a
_977 2 3
eV gr (V-b)* Vv
F2 va
DS =S(T1,P,)- S(T,P1) = - RT- 2a dp
P1 -
(V-bP Ve

vii. Gibbs Free Energy

13
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vEP o

v :

4G _ €MNVer _ (V-bVE RT _ 2ad

ePor _ &po R gv-bP v3g
eV or

P2 4
< (V-b)VE€ RT
DG = G(Ty,Pp) - G(Ty,P) = (- ( )

é - —(qdP
P1 R é(V- b)2 V3g

viii. Helmholtz Free Energy
gAG _ p _ p
éfPor _afipo RT _2a
" Gov 2 3
éNVegr (V-b) V

P2
DA = ATy P2)- A(T,P) = 9 P 5 dP
(v-p)?2 V3

14
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Example C.3. Numerical Example: Isothermal Expansion/Compression for van der Waal’s Gas

Let'sisothermally compress Argon from (T4,P;) = (500 K,101325 Pa) to state
(T1,P»>) = (500K, 202650 Pa) . We will assume Argon is avan der Waal’s Gas with critical properties

T, =150.8K and P, =4.874x10°Pa.
We can write a simple code in MATLAB, which implements the equations in Section C.3. This has been done.

We use a Fourth-Order Simpson’s Method with 20 intervals to numerically integrate all the functions. The output
of the code is asfollows:

Single Component, single phase fluid: Ar

Model: van der Waals Gas w/ vdw Cp

Initial Condition: T =500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102585e-002 (m"3/mol)

Final Condition : T =500.000000 (K) and P = 2.026500e+005 (Pa) V = 2.051268e-002 (m"3/mol)

Heat Capacity  : Cp(To,Po) = 2.079827e+001 Cp(Tf,Pf) = 2.081153e+001 (J/mol/K)

Heat Capacity  : Cv(To,Po) = 1.247764e+001 Cv(Tf,Pf) = 1.248429e+001 (Jmol/K)

Changes due to Change in Temperature

Delta U = 0.000000e+000 (Jmol) Delta H = 0.000000e+000 (Jmol) Delta S = 0.000000e+000 (J/mol/K)
Delta G = 0.000000e+000 (Jmol) Delta A = 0.000000e+000 (Jmol)

Changes due to Change in Pressure

Delta U = -3.316454e+000 (Jmol) Delta H = -3.367100e+000 (Jmol) Delta S = -5.769451e+000 (Jmol/K)
Delta G = 2.881358e+003 (Jmol) Delta A = 2.881409e+003 (J/mol)

Total Changes

Delta U = -3.316454e+000 (Jmol) Delta H = -3.367100e+000 (Jmol) Delta S = -5.769451e+000 (¥mol/K)
Delta G = 2.881358e+003 (Jmol) Delta A = 2.881409e+003 (J/mol)

Unlike an ideal gas, avdW gas does have a change in U or H when undergoing an isothermal compression. The
changein U and H are negative. The change in entropy is negative, because the gas is more dense at the final
state. The values of DG and DA are not the same, as they were for the ideal gas.

15
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D.1. Isobaric Heating/Cooling for Arbitrary Equation of State

In this section we are going to provide formulae, obtained from the Bridgeman Tables, for the changein
T,P,V,U, H, S G, and A, dueto an isobaric heating/cooling. In this problem, we move from state (Tl, Pl) to

state (T»,P;) . Ineach case, the relevant formulae in the Bridgeman Tables are of the form:

adTXO
e‘ﬂsz

whereX canbeT,P,V, U, H, S, G, and A.

In each case, it is understood that to obtain the macroscopic change, we must integrate the partial.

T2
DX© Xy- X = oEn? g7

Tl ﬂTqD

Below, we simply present the partial derivatives.

i. Temperature

aéTFo _1
e‘ﬂTqD

ii. Pressure

HApo _

el g,

iii. Volume

Vo _ (V) _ &g

Mo (M oo

&V oy
iv. Internal Energy
&po , Apo Hp 0
CoaP 2 4 pt? il
AU (U _ eV ar Py ., T g
MTe (1T b 0 I
eV or eV or

v. Enthalpy
16
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L
P -
o _(Hp _ " éVar
Mg (M aps 7
eV or
vi. Entropy
Coap s

afSo _(1Sh _ T &NVar _Cp

&7 e (Mh o T
g T
eV or

vii. Gibbs Free Energy

&P 6
. TG, -
GO _ (TG)p _ elVg

M (M #po
eV or

=-S

viii. Helmholtz Free Energy

aAng _ (1A _"ema, EVe _TerTe,
Mg (M) o 0 P o
eV gr eV or

We see that in order to obtain the changesin G and A, we need the entropy at an arbitrary temperature and
pressure. It's worthwhile to see how we get this. We know that we can express the entropy at any arbitrary T and
Pas

T .. P ..
S(TP) = S(TrerPrer) + & P Fret)0 g, o ESTPIO 4o

P
Tref © m % Pref © 1 ar

Using the Bridgeman Tables to get the partial derivatives, we have:

&P 0
T P Saro
S(TP) = S(TierPer) + o PLrtears ¢ S Vg
Tref Pref Qig
eV er

17
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So if we know the reference entropy at one point, we can calculate the entropy at any other (T,P) state. However,
notice that once we have S, that only gives us the partial derivative required to obtain G or A. So, we will have to
integrate again, to obtain DG and DA. Furthermore, if the first integral (over T) in the definition of Sis evaluated
at Pref (the lower limit of the P-integration), then the second integral (over P) must be evaluated at T (the upper
limit of the T-integration). Thisis because we first isobarically heat the fluid at the reference pressure. Then we
isothermally compress the fluid at the arbitrary T.

Where can we get the reference entropy from? Well, we can’t get it from classical thermodynamics.
However, we can get it from statistical thermodynamics. The entropy of an ideal monatomic gasis:

al V S ~ 1 RT )
Sref = S(Tref,Pref) =RIN& —3929: RIné ref g20
Nav L 3 Nay Pl 3

This equation is called the Sackur-Tetrode Equation. V isthe molar volume. N, isAvogadro’s number. The
thermal de Broglie wavelength has units of length and is defined as

h2
2pMKT et

where h is Planck’ s constant, k is Boltzmann's constant, and m is the mass of the atom. Theideal gas must have a
reference temperature which is large enough that the ideal gas assumption is valid.

The Sackur-Tetrode equation applies to monatomic gases only. If we have a more complicated atom, then
we need to either derive the entropy from statistical mechanics, or we need to find a table of reference entropies.
Either way, once we have the reference entropy, we can proceed to calculate the change in the Gibbs free energy.

18
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D.2. Isobaric Heating/Cooling for an Ideal Gas

The Ideal Gas has an equation of state

PV =RT or P=E
\/

and, for a monatomic ideal gas, it has a heat capacity

The necessary derivatives are:

@po _ RT

NV V2

Zp o

-R
gﬂTgé,v V

i. Temperature
DT°T,-Tq
ii. Pressure

DPOP2-P1:O

iii. Volume
_8@0 R
avo _ &Ta "y _V_R
Mg s RT T P
eV ar \%
To e To
DV =V, -V, = \35]_\/9de \BdT:E_ﬂ
27 V1= 0§ OP =
TleﬂT T

iv. Internal Energy
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pEIP 0 R
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efll o &Hpo 2 RT 2
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v. Enthalpy
?ﬂg = Cp :§R
ellT o 2
T2 T2
DH=H,- H; = (‘)adﬂ— dT = 0§RdT = ER(T2 -Ty)
TleﬂTgp T12 2
vi. Entropy
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2456 . "25R_ 5_ a,0

5
DS=S,-S;= 9T dT = §2mdT = 2RIngE22
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vii. Gibbs Free Energy
g[_Gg =-S
el &

At this point, we need the entropy of an ideal gas.

T P :
S(T.P) = S(Tref:Pret) + O %T £ LILI: VS
Tref Pref 979

é S0 N N
A Yy e 0 e 0
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Thisisthe entropy that gives the partial derivative for G. Itisafunction of T and P.

To T2 1
DGsz-Gl— é‘aT—G— dT = 0-:Rlnel RT 62u+5

RING. - Rln g—
T, € el & T ] SNav ProsL3 0 2 Tref & Pref %

Recall or look in aTable of Integralsfor:

gn(x) = xIn(x) - x

e 5 &P
DG =& Sref +5 Rln(Tref)+R|n (Tf - To - _R[Tfln Tf) Tf)' (Toln(To)' To)]
viii. Helmholtz Free Energy
o o
gAG _ e‘ﬂTﬂ\/ 5= Py _S=-R-S
MM  apo RT
&V gr V2
T2 T2
DA=A,- A= Eé;éﬁ—dT_(‘JRanG R(T; - T,)+DG
Tl P T1
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Example D.2. Numerical Example: Isobaric Heating/Cooling for Ideal Gas

Let'sisobarically heat Argon from (T1,P;) = (500 K, 101325 Pa) to state
(T»,P;) =(600K,101325 Pa). We will assume Argon is an Ideal Gas.

We can write a simple code in MATLAB, which implements the equations in Section D.2. This has been done.
The output of the code is as follows:

Single Component, single phase fluid: Ar

Model: Ideal Gas

Initial Condition: T =500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102640e-002 (m"3/mol)
Final Condition : T =600.000000 (K) and P = 1.013250e+005 (Pa) V = 4.923168e-002 (m"3/mol)
Heat Capacity  : Cp(To,Po) = 2.078500e+001 Cp(Tf,Pf) = 2.078500e+001 (J/mol/K)

Heat Capacity  : Cv(To,Po) = 1.247100e+001 Cv(Tf,Pf) = 1.247100e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU = 1.247100e+003 (J/mol) Delta H = 2.078500e+003 (J/mol) Delta S = 3.789554e+000 (J/mol/K)
Delta G = -1.670550e+004 (Jmol) Delta A = -1.753690e+004 (J/mol)

Changes due to Change in Pressure

Delta U = 0.000000e+000 (J/mol) Delta H = 0.000000e+000 (Jmol) Delta S = 0.000000e+000 (J/mol/K)
Delta G = 0.000000e+000 (Jmol) Delta A = 0.000000e+000 (Jmol)

Total Changes

DeltaU = 1.247100e+003 (J/mol) Delta H = 2.078500e+003 (J/mol) Delta S = 3.789554e+000 (J/mol/K)
Delta G = -1.670550e+004 (Jmol) Delta A = -1.753690e+004 (J/mol)

The change in U and H for an ideal gas undergoing an isobaric heating is positive. The entropy also increases
because the gas is now less dense, so the molar volume has increased. Finally G and A decrease because the
entropic term (-TS) islarger than the energetic term (U or H).
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D.3. Isobaric Heating/Cooling for a van der Waal’s gas

The van der Waal’s Gas has an equation of state

= — (4.9
V-b 2
and, for a monatomic vdW gas, it has a heat capacity

_ Rgﬂspv3 - Va+6ab?

Cp=-%—3 N
2% PV° - Va+2ab 4

We will also need the reference entropy of a monatomic van der Waal’s gas

1 Vier-b 0
Sret = S(TrefPret) =RINZ ref3 e2!l
svav L u
e u

The only necessary derivatives of the equation of state are:

&po _ _RT 22

Vo (V- V3
dpo _ R
v S .
efTg, V-D
i. Temperature
DT°T,-Ty
ii. Pressure

DPOP2-P1:O

ili. Volume
Hp 6 R
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23



Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, March, 2001
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iv. Internal Energy
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vii. Gibbs Free Energy
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At this point, we need the entropy of a monatomic vdw gas.
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Example D.3. Numerical Example: Isobaric Heating/Cooling for van der Waal’s Gas

Let'sisobarically heat Argon from (T1,P;) = (500 K,101325 Pa) to state
(T»,P;) =(600K,101325Pa). Wewill assume Argon isavdw Gas.

We can write a simple code in MATLAB, which implements the equations in Section D.3. This has been done.
The output of the code is as follows:

Single Component, single phase fluid: Ar

Model: van der Waals Gas w/ vdw Cp

Initial Condition: T = 500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102585e-002 (m"3/mol)
Final Condition : T =600.000000 (K) and P = 1.013250e+005 (Pa) V = 4.923658e-002 (m"3/mol)
Heat Capacity  : Cp(To,Po) = 2.079827e+001 Cp(Tf,Pf) = 2.079421e+001 (J/mol/K)

Heat Capacity  : Cv(To,Po) = 1.247764e+001 Cv(Tf,Pf) = 1.247561e+001 (¥mol/K)

Changes due to Change in Temperature

DeltaU = 1.247653e+003 (J/mol) Delta H = 2.079605e+003 (J/mol) Delta S = 3.791580e+000 (J/mol/K)
Delta G = -1.670495e+004 (Jmol) Delta A = -1.753690e+004 (J/mol)

Changes due to Change in Pressure

Delta U = 0.000000e+000 (J/mol) Delta H = 0.000000e+000 (Jmol) Delta S = 0.000000e+000 (J/mol/K)
Delta G = 0.000000e+000 (Jmol) Delta A = 0.000000e+000 (Jmol)

Total Changes

DeltaU = 1.247653e+003 (J/mol) Delta H = 2.079605e+003 (J/mol) Delta S = 3.791580e+000 (J/mol/K)
Delta G = -1.670495e+004 (Jmol) Delta A = -1.753690e+004 (J/mol)

Y ou can compare these results to those obtained for an ideal gas, to see how the van der Waal’ s gas behaved
differently.

Idea Gas:

Delta U = 1.247100e+003 (¥mol) Delta H = 2.078500e+003 (J¥mol) Delta S = 3.789554e+000 (Jmol/K)
Delta G = -1.670550e+004 (Jmol) Delta A = -1.753690e+004 (Jmol)

26



Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, March, 2001

D.4. Isobaric Heating/Cooling for a van der Waal’'s gas with Cubic Polynomial C,

Frequently engineers do not use the rigorous van der Waal’ s heat capacity

_5885Pv3- Va+6ab9
2%pPv3-va+2ab 5

Cp

Instead they use a heat capacity fitted from data to a cubic polynomial in temperature. Generally we can find fitted
modelsfor Cp for common materials. In Sandler, we find the model

Cp —a+bT+cT? +dT3

with tables of the coefficients for avariety of fluids. These heat capacities are only approximations. Notably, there
is no pressure dependence in the approximate heat capacity. We will see that using them violates (to a small
extent) a fundamental precept of thermodynamics, namely that U, H, S, G, and A are state (path-independent)
variables.

If we choose to use such an approximation, as we often do, we can still use the equations derived above for
the heat capacity. However, we must substitute our approximation in for C, rather than the rigorous definition.

27



Dept. of Chemical Engineering, Univ. of TN, Knoxville - D. Keffer, March, 2001
Example D.4. Numerical Example: |sobaric Heating/Cooling for van der Waal’s Gasw/ approximate C,

Let'sisobarically heat Argon from (T1,P;) = (500 K,101325 Pa) to state

(T»,P;) =(600K,101325Pa). We will assume Argon isavdwW Gas with a heat capacity approximated by
acubic polynomial. We will use the following values for the constants in the polynomial.

Cpcon = [6.529; -0.03753; 0.1930; -0.6861];
a=4.184*Cpcon(1)

b = 4.184* Cpcon(2)* 1.0e-2

¢ = 4.184* Cpcon(3)*1.0e-5

d = 4.184* Cpcon(4)* 1.0e-9

Thiswill give us a heat capacity in Jmole for atemperature given in K. These values are taken from Sandler.

We can write a simple code in MATLAB, which implements the equations in Section D.4. This has been done.
The output of the code is as follows:

Single Component, single phase fluid: Ar

Model: van der Waals Gas w/ cubic polynomia Cp

Initial Condition: T = 500.000000 (K) and P = 1.013250e+005 (Pa) V = 4.102585e-002 (m"3/mol)
Final Condition : T =600.000000 (K) and P = 1.013250e+005 (Pa) V = 4.923658e-002 (m"3/mol)
Heat Capacity  : Cp(To,Po) = 2.819216e+001 Cp(Tf,Pf) = 2.866217e+001 (J/mol/K)

Heat Capacity  : Cv(To,Po) = 1.986489e+001 Cv(Tf,Pf) = 2.033896e+001 (Jmol/K)

Changes due to Change in Temperature

Delta U = 2.009655e+003 (J/mol) Delta H = 2.842160e+003 (J/mol) Delta S = 5.180569e+000 (J/mol/K)
Delta G = -1.713624e+004 (Jmol) Delta A = -1.796820e+004 (J/mol)

Changes due to Change in Pressure

Delta U = 0.000000e+000 (J/mol) Delta H = 0.000000e+000 (Jmol) Delta S = 0.000000e+000 (J/mol/K)
Delta G = 0.000000e+000 (Jmol) Delta A = 0.000000e+000 (Jmol)

Total Changes

Delta U = 2.009655e+003 (J/mol) Delta H = 2.842160e+003 (Jmol) Delta S = 5.180569e+000 (J/mol/K)
Delta G = -1.713624e+004 (Jmol) Delta A = -1.796820e+004 (J/mol)

Y ou can compare these results to those obtained for avan der Waal’s gas with arigorous C,, to see how the
approximate heat capacity changed the results..

Total Changes from van der Waal’ s gas with rigorous heat capacity.

Delta U = 1.247653e+003 (Jmol) Delta H = 2.079605e+003 (J¥mol) Delta S = 3.791580e+000 (Jmol/K)
Delta G = -1.670495e+004 (Jmol) Delta A = -1.753690e+004 (Jmol)
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