Problem 1. (48 points)

Consider an extractor:

![Extractor Diagram]

This unit uses a recycled furfural stream as the solvent to extract benzene from a cyclohexane product stream. The data you are given is:

<table>
<thead>
<tr>
<th>Feed (F)</th>
<th>Extract (E)</th>
<th>Raffinate (R)</th>
<th>Solvent (S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_{F,b} = 0.1</td>
<td>x_{E,b}, x_{E,c}, x_{E,f}</td>
<td>x_{R,b} = ?</td>
<td>x_{S,b}, x_{S,c}, x_{S,f}</td>
</tr>
<tr>
<td>x_{F,c} = 0.9</td>
<td></td>
<td>x_{R,c} = ?</td>
<td></td>
</tr>
<tr>
<td>x_{F,f} = 0.0</td>
<td></td>
<td>x_{R,f} = ?</td>
<td></td>
</tr>
<tr>
<td>x_{S,b} = 0.0010</td>
<td></td>
<td>x_{S,c} = 0.0001</td>
<td></td>
</tr>
<tr>
<td>x_{S,f} = 0.9989</td>
<td></td>
<td>x_{S,f} = ?</td>
<td></td>
</tr>
</tbody>
</table>

You are to consider F_0 and E_0 as *givens* (not variables) defined by:

- $a = 100$
- $b = 105$
- $F_0 = \text{rand} \cdot (b - a) + a$
- $E_0 = F_0 + S - R$

where `rand` is the random number generator function of MATLAB.

The equilibrium constants are: $K_b = \frac{x_{E,b}}{x_{R,b}} = 20.0$ and $K_c = \frac{x_{E,c}}{x_{R,c}} = 0.05$.

Then you have six unknowns, the compositions of the raffinate stream and the composition of the extract stream.
(a) Write equations which will yield the unknowns. Clearly identify the origin of each equation (mass balance, constraint, etc.) (12 points)
(b) Convert these equations to a linear form with unknown terms on the left hand side and constants on the right hand side, if they are not already in that form. (12 points)
(c) Convert the equations to matrices and vectors. (4 points)
(d) Compute the determinant and rank of the matrix, and list the random values of F and E used in the calculation. (8 points)
(e) Using MATLAB, solve for the steady-state values of the unknowns. (12 points)

(Hint: since you have 3 components, you will have three independent material balances. You also have 2 streams with constraints that the sum of the mole fractions must be unity. You also have 2 separation ratio constraints. Therefore, you have 7 equations. However, you only have 6 unknowns. Not all of the 7 equations are independent. You must choose 6 independent equations. Part (d) should indicate to you whether you have selected 6 independent equations.)

Problem 2. (54 points)
Use the data given in the file “file.xm3_pr2.dat” (available on the website) to determine if the data is best fit by a first, second, or third-order single-variable polynomial fit.
For the first order case, determine
(a) the value of the model parameters (4 points)
(b) the standard deviation of the model parameters (4 points)
(c) the measure of fit of the model (2 points)
(d) write out the model equation with the parameters you have obtained. (2 points)
For the second order case, determine
(e) the value of the model parameters (6 points)
(f) the standard deviation of the model parameters (6 points)
(g) the measure of fit of the model (2 points)
(h) write out the model equation with the parameters you have obtained. (2 points)
For the third order, determine
(i) the value of the model parameters (8 points)
(j) the standard deviation of the model parameters (8 points)
(k) the measure of fit of the model (2 points)
(l) write out the model equation with the parameters you have obtained. (2 points)
(m) Based on this data determine which case is best. Justify. (4 points)

Problem 3. (20 points)
Consider the non-linear function:

\[f(x) = 0.001 \left(\frac{x}{4} - 5 \right)^3 \sin \left(\frac{x}{4} + 4 \right) - \frac{x^2}{16} + 3 \exp \left(-\frac{x}{40} \right) \]

(a) How many roots are there between x = 0 and x = 100?
(b) What are the roots of f(x) between x = 0 and x = 100?
(c) Plot the function over the range x = 0 to x = 100 with the line y=0 and circle the roots.