Exam I

Administered: Monday, September 13, 2004
22 points
For each problem part: 0 points if not attempted or no work shown,
1 point for partial credit, if work is shown,
2 points for correct numerical value of solution

Problem 1. (16 points)

Consider the following PDF

$$
f(x)=\left\{\begin{array}{cc}
c\left(x^{2}-1\right) & \text { for } 1 \leq x \leq 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

(a) Is this PDF continuous or discrete?
(b) Find the value of c that normalizes this PDF.
(c) Find the probability that x is between 1 and 2.
(d) Find the probability that x is greater than 2.
(e) Find the mean of the random variable x.
(f) Find the mean of the function of the random variable, $g(x)=5 x-12$

Solution:

(a) Is this PDF continuous or discrete?

This PDF is continuous.
(b) Find the value of c that normalizes this PDF.

$$
\begin{aligned}
& \int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{\infty} c\left(x^{2}-1\right) d x=c \int_{1}^{3}\left(x^{2}-1\right) d x=c\left[\frac{x^{3}}{3}-x\right]_{1}^{3}=c\left[6+\frac{2}{3}\right]=c \frac{20}{3}=1 \\
& c=\frac{3}{20}
\end{aligned}
$$

(c) Find the probability that x is between 1 and 2.

$$
P(1<x<2)=\int_{1}^{2} f(x) d x=\frac{3}{20}\left[\frac{x^{3}}{3}-x\right]_{1}^{2}=\frac{3}{20}\left[\frac{2}{3}+\frac{2}{3}\right]=\frac{1}{5}
$$

(d) Find the probability that x is greater than 2.

$$
P(x>2)=1-P(1<x<2)=1-\frac{1}{5}=\frac{4}{5}
$$

(e) Find the mean of the random variable x.

$$
\mu_{x}=\int_{-\infty}^{\infty} x f(x) d x=\frac{3}{20} \int_{1}^{3} x\left(x^{2}-1\right) d x=\frac{3}{20}\left[\frac{x^{4}}{4}-\frac{x^{2}}{2}\right]_{1}^{3}=\frac{3}{20}\left[\frac{63}{4}+\frac{1}{4}\right]=\frac{12}{5}
$$

(f) Find the mean of the function of the random variable, $g(x)=5 x-12$.

Use the fact that the mean is a linear operator.

$$
\mu_{g(x)}=5 \mu_{x}-12=5 \frac{12}{5}-12=0
$$

Problem 2. (10 points)

Studies have shown that approximately 92% of the human population is right-handed (or right hand dominant). Recently, a study was performed to examine the relationship between handedness and location of linguistics ability in the human brain. The following results were published*.

	right-handed people	left-handed people
language dominant in right brain	5%	30%
language dominant in left brain	95%	70%

${ }^{*}$ McManus, I. C. 2002. Right Hand Left Hand. Great Britain: Weidenfeld \& Nicolson, Ltd. 412p.
Using this information, answer the following questions.
(a) Draw a Venn Diagram of the sample space for the handedness and language dominance of a person.
(b) What is the probability that a person is language dominant in the right brain given that they are right handed?
(c) What is the probability that a person is language dominant in the left brain?
(d) What is the probability that a person is right-handed and language dominant in the right brain?
(e) What is the probability that a person is right-handed, given that they are language dominant in the right brain?

Solution:

We are given:

$$
\begin{aligned}
& P(R H)=0.92 \\
& P(R B \mid R H)=0.05 \\
& P(L B \mid R H)=0.95 \\
& P(R B \mid L H)=0.30 \\
& P(L B \mid L H)=0.70
\end{aligned}
$$

(a) Draw a Venn Diagram of the sample space for the handedness and language dominance of a person.

$R H \cap R B$	$L H \cap R B$
$R H \cap L B$	$L H \cap L B$

(b) What is the probability that a person is language dominant in the right brain given that they are right handed?

This information was given in the problem statement.

$$
P(R B \mid R H)=0.05
$$

(c) What is the probability that a person is language dominant in the left brain?

Consider the union rule.

$$
\begin{aligned}
& P(L B)=P(L B \cap L H)+P(L B \cap R H) \\
& P(L B)=P(L B \mid L H) P(L H)+P(L B \mid R H) P(R H) \\
& P(L B)=0.70 \cdot 0.08+0.95 \cdot 0.92=0.9300
\end{aligned}
$$

(d) What is the probability that a person is right-handed and language dominant in the right brain?

$$
P(R H \cap R B)=P(R B \mid R H) P(R H)=0.05 \cdot 0.92=0.0460
$$

(e) What is the probability that a person is right-handed, given that they are language dominant in the right brain? From problem (c), we know that

$$
\begin{aligned}
& P(R B)=1-P(L B)=1-0.9300=0.07 \\
& P(R H \mid R B)=\frac{P(R H \cap R B)}{P(R B)}=\frac{0.0460}{0.07}=0.6571
\end{aligned}
$$

