Problem 1. (16 points)

A railroad tanker containing concentrated sulfuric acid derails near a populated area. The concentration of sulfuric acid in the air as a function of the radial position from the point of the derailment at its worst time is given by the following function, where \(r \) is in miles, and \(c \) is in ppm

\[
c(r) = \begin{cases}
20 \exp(-2r) & \text{for } 0 \leq r \leq 10 \\
0 & \text{otherwise}
\end{cases}
\]

The probability distribution of the concentration of sulfuric acid is proportional to the concentration.

\[
f(r) = 2\pi c_0 c(r)r
\]

(a) What is the random variable in this problem, both in terms of physical interpretation and the variable used?
(b) What value of \(c_0 \) will make this PDF a legitimate function?
(c) What fraction of the sulfuric acid is located within 1 mile of the derailment?
(d) What fraction of the sulfuric acid is located beyond 1 mile of the derailment?
(e) What is the mean sulfuric acid concentration in the ten mile radius?

You may find the following indefinite integrals useful:

\[
\int ar \exp(-br) \, dr = -\frac{a}{b^2} (br + 1) \exp(-br)
\]

\[
\int ar^2 \exp(-br) \, dr = -\frac{a}{b^3} \left(b^2 r^2 + 2br + 2 \right) \exp(-br)
\]

\[
\int ar^3 \exp(-br) \, dr = -\frac{a}{b^4} \left(b^3 r^3 + 3b^2 r^2 + 6br + 6 \right) \exp(-br)
\]

Solution:

(a) What is the random variable in this problem, both in terms of physical interpretation and the variable used?

The random variable, \(r \), is the radial position. \(c(r) \) is a function of the random variable \(r \).

(b) What value of \(c_0 \) will make this PDF a legitimate function?
\[
\begin{align*}
P(-\infty < x < \infty) &= 1 = \int_{-\infty}^{\infty} f(r) dr = \int_{0}^{10} 2 \pi c_0 c(r) r dr = \int_{0}^{10} 2 \pi c_0 20 \exp(-2r) r dr
\end{align*}
\]

\[
\begin{align*}
c_0 &= \frac{1}{2 \pi 20} \int_{0}^{10} \exp(-2r) r dr = \frac{1}{2 \pi 20} \left[-\frac{1}{2^2} (2r + 1) \exp(-2r)\right]_0^{10}
\end{align*}
\]

\[
\begin{align*}
c_0 &= \frac{1}{2 \pi 20} \left[-\frac{1}{2^2} (2 \cdot 10 + 1) \exp(-2 \cdot 10)\right] - \left[-\frac{1}{2^2}\right] \\
&\approx 0.0318
\end{align*}
\]

(c) What fraction of the sulfuric acid is located within 1 mile of the derailment?

\[
\begin{align*}
P(0 < x < 1) &= \int_{0}^{1} f(r) dr = \int_{0}^{1} 2 \pi c_0 20 \exp(-2r) r dr = 2 \pi c_0 \left[-\frac{1}{2^2} (2r + 1) \exp(-2r)\right]_0^{1}
\end{align*}
\]

\[
\begin{align*}
P(0 < x < 1) &= 2 \pi c_0 \left[-\frac{1}{2^2} (2 \cdot 1 + 1) \exp(-2 \cdot 1)\right] - \left[-\frac{1}{2^2}\right] \\
&\approx 0.5940
\end{align*}
\]

(d) What fraction of the sulfuric acid is located beyond 1 mile of the derailment?

\[
\begin{align*}
P(x > 1) &= 1 - P(0 < x < 1) \approx 1 - 0.5940 = 0.4060
\end{align*}
\]

(e) What is the mean sulfuric acid concentration in the ten mile radius?

\[
\begin{align*}
\mu_c &= \int_{-\infty}^{\infty} c(r) f(r) dr = \int_{0}^{10} c(r) 2 \pi c_0 c(r) r dr = \int_{0}^{10} (20 \exp(-2r)) 2 \pi c_0 20 \exp(-2r) r dr
\end{align*}
\]

\[
\begin{align*}
\mu_c &= \pi c_0 800 \int_{0}^{10} \exp(-4r) r dr = \pi c_0 800 \int_{0}^{10} \exp(-4r) r dr
\end{align*}
\]

\[
\begin{align*}
\mu_c &= \pi c_0 800 \left[-\frac{a}{b^2} (br + 1) \exp(-br)\right]_0^{10} = \pi c_0 800 \left[-\frac{1}{16^2} (4r + 1) \exp(-4r)\right]_0^{10}
\end{align*}
\]

\[
\begin{align*}
\mu_c &= \pi c_0 800 \left[-\frac{1}{4^2} (4r + 1) \exp(-4r)\right] - \left[-\frac{1}{4^2}\right]_0^{10} \\
&\approx 5.000 \text{ ppm}
\end{align*}
\]
Problem 2. (10 points)

Seudenol, C₇H₁₂O, is an aggregation pheromone from the female Douglas fir beetle, *Dendroctonus pseudotsugae*. The natural pheromone is a racemic mixture which is much more biologically active than either single enantiomer. The two enatiomers, (R)-seudenol and (S)-seudenol, are shown in the figure below.

We are studying two alternative methods, method A and method B to synthesize this mixture. Method A was used to generate 40% of the product. Method A produced 64% (R)-seudenol. Method B produces 76% (R)-seudenol. Answer the following questions. Where appropriate, report to 4 significant figures.

(a) Draw a Venn Diagram of the sample space for the process and classification of the molecules in the product.

(b) What is the probability that a molecule was synthesize using method A and is (R)-seudenol?

(c) What is the probability that a molecule is (R)-seudenol?

(d) What is the probability that a molecule was generated using method B given that it is (R)-seudenol?

(e) What is the probability that a molecule was synthesize using method B and is (S)-seudenol?

Solution:

We are given:

\[
\begin{align*}
P(A) &= 0.40 \\
P(R \mid A) &= 0.64 \\
P(R \mid B) &= 0.76
\end{align*}
\]

(a) Draw a Venn Diagram of the sample space for the process and classification of the product.

(b) What is the probability that a molecule was synthesize using method A and is (R)-seudenol?

\[
P(R \mid A) = \frac{P(R \cap A)}{P(A)}
\]

\[
P(R \cap A) = P(R \mid A)P(A) = 0.64 \times 0.40 = 0.256
\]

(c) What is the probability that a molecule is (R)-seudenol?
P(B) = 1 − P(A)

P(R | B) = \frac{P(R \cap B)}{P(B)}

P(R \cap B) = P(R | B)P(B) = P(R | B)[1 − P(A)] = 0.76 \cdot [1 − 0.40] = 0.456

P(R) = P[(R \cap A) \cup (R \cap B)] = P(R \cap A) + P(R \cap B) − P[(R \cap A) \cap (R \cap B)]

= 0.256 + 0.456 − 0 = 0.712

(d) What is the probability that a molecule was generated using method B given that it is (R)-seudenol?

P(B | R) = \frac{P(R \cap B)}{P(R)} = \frac{0.456}{0.712} = 0.6404

(e) What is the probability that a molecule was synthesize using method B and is (S)-seudenol?

P(B) = P[(S \cap B) \cup (R \cap B)] = P(S \cap B) + P(R \cap B) − P[(S \cap B) \cap (R \cap B)]

P[(S \cap B) \cap (R \cap B)] = 0

P(S \cap B) = P(B) − P(R \cap B) = 0.6 − 0.456 = 0.144