Homework Assignment Number Five
Assigned: Wednesday, February 10, 1999
Due: Wednesday, February 17, 1999 BEFORE LECTURE STARTS.

Problem 1. Geankoplis, problem 2.11-3, page 113
Air $\mathrm{T}=288 \mathrm{~K}, \mathrm{p}=275000 \mathrm{~Pa}$, isothermal compressible flow
$D=0.080 \mathrm{~m}, \mathrm{~L}=60 \mathrm{~m}, \mathrm{MW}=29 \frac{\mathrm{gram}}{\mathrm{mol}}=0.029 \frac{\mathrm{~kg}}{\mathrm{~mol}}$
$\mathrm{G}=\frac{\dot{\mathrm{m}}}{\mathrm{A}}=165.5 \frac{\mathrm{~kg}}{\mathrm{~m}^{2} \cdot \mathrm{~s}}$
From appendix: $\mu=1.8 \cdot 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}$
$\frac{\varepsilon}{D}=\frac{0.00015}{0.080}=000575$
$N_{R e}=\frac{D \bar{v} \rho}{\mu}=\frac{D G}{\mu}=7.35 \cdot 10^{-5}$ therefore flow is turbulent
from table on page 88 of Geankoplis $f=0.004$

From Equation (2.11-9) Geankoplis, page 102

$$
\begin{aligned}
& p_{1}^{2}-p_{2}^{2}=\frac{4 f L G^{2} R T}{D \cdot M W}+\frac{4 G^{2} R T}{M W} \ln \left(\frac{p_{1}}{p_{2}}\right) \\
& 7.5625 \cdot 10^{10}-p_{2}^{2}=2.7139 \cdot 10^{10}+4.5230 \cdot 10^{9} \ln \left(\frac{275000}{p_{2}}\right)
\end{aligned}
$$

Guess $p_{2}=200000$. Substitute in in term on RHS. Solve for p_{2} on LHS. Repeat, until guess is the same as result. Using, Excel to iteratively solve:

```
iteration pold pnew
    1 200000 216900.1
    2 216900.1 217744.2
    317744.2 217784.5
    4 217784.5 217786.5
    5 217786.5 217786.6
    6 217786.6 217786.6
```

so, $\mathrm{p}_{2}=217786 \mathrm{~Pa}$
(2 pts)

$$
\begin{align*}
& v_{\max }=\sqrt{\frac{R T}{M W}}=\sqrt{\frac{8.314 \cdot 288}{0.029}}=287.3 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{2pts}\\
& \mathrm{~A}=0.0050 \mathrm{~m}^{2} \quad \dot{\mathrm{~m}}=\mathrm{GA}=0.832 \frac{\mathrm{~kg}}{\mathrm{~s}} \\
& v_{2}=\frac{\dot{\mathrm{m}}}{\mathrm{~A} \rho_{2}}=\frac{\dot{\mathrm{m}}}{\mathrm{~A}} \frac{\mathrm{RT}}{\mathrm{p}_{2} M W}=63 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{2pts}
\end{align*}
$$

Problem 2. Geankoplis, problem 3.1-4, page 205

$$
\begin{aligned}
& \text { water } T=293 \mathrm{~K}, \mathrm{p}=1 \mathrm{~atm}, \mathrm{D}=1.0 \mathrm{~m}, \mathrm{~L}=10 \mathrm{~m}, \mathrm{v}=1.2 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \text { From appendix: } \mu=1.00 \cdot 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}, \quad \rho=998 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \mathrm{~N}_{\mathrm{Re}}=\frac{\mathrm{D}_{\mathrm{p}} \overline{\mathrm{v}} \rho}{\mu}=\frac{(1)(1.2)(998)}{\left(1.00 \cdot 10^{-3}\right)}=1.192 \cdot 10^{6} \text { therefore flow is turbulent }
\end{aligned}
$$

$$
\text { and since } \mathrm{N}_{\mathrm{Re}}>5 \cdot 10^{5}, \mathrm{C}_{\mathrm{D}}=0.33
$$

$$
\begin{equation*}
F_{D}=\left(C_{D} \frac{\rho \bar{v}^{2}}{2}\right) A_{p}=\left(0.33 \frac{998.23 \cdot 1.2^{2}}{2}\right)(1 \cdot 10)=2370 \mathrm{~N} \tag{2pts}
\end{equation*}
$$

Problem 3. Geankoplis, problem 3.1-5, page 205

$$
\text { Packed bed of cubes: } \mathrm{L}=0.02 \mathrm{~m}, \rho=990 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, \rho_{\mathrm{p}}=1500 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}
$$

The density of the bed is equal to the densities of void and solid weighted by their respective volume factions. The density of the void is zero.

$$
\begin{align*}
& \rho_{\text {bed }}=\varepsilon \rho_{\text {void }}+(1-\varepsilon) \rho_{\text {solid }} \\
& \rho_{\text {bed }}=(1-\varepsilon) \rho_{\text {solid }} \\
& \varepsilon=1-\frac{\rho_{\text {bed }}}{\rho_{\text {solid }}}=1-\frac{980}{1500}=0.3467 \tag{2pts}
\end{align*}
$$

The definition of the specific surface is the surface area over volume, which for a cube is;

$$
a_{v}=\frac{S_{p}}{v_{p}}=\frac{6 L^{2}}{L^{3}}=\frac{6}{L}
$$

Now, Geankoplis gives us ϕ_{S} for a cube on the on page 122. If he had not, we can calculate ϕ_{S} by knowing that the sphericity is defined as the ratio of the diameter of a sphere to the length of the side of a cube, for a sphere and a cube with the same total volume.

$$
\begin{aligned}
& V_{\text {sph }}=V_{\text {cube }} \\
& \frac{4}{3} \pi\left(\frac{D_{p}}{2}\right)^{3}=L^{3}
\end{aligned}
$$

This gives an effective diameter of:

$$
D_{p}=\sqrt[3]{\frac{6}{\pi}} L
$$

The sphericity is the ratio of the surface area of the sphere to the surface area of the particle:

$$
\phi_{\mathrm{s}}=\frac{\pi \mathrm{D}_{\mathrm{p}}^{2}}{\mathrm{~S}_{\mathrm{p}}}=\frac{\pi \mathrm{D}_{\mathrm{p}}^{2}}{6 \mathrm{~L}^{2}}=\frac{\pi\left(\sqrt[3]{\frac{6}{\pi}}{ }^{2}\right)^{2}}{6 \mathrm{~L}^{2}}=\left(\frac{\pi}{6}\right)^{1-2 / 3}=0.806
$$

Equating the two expressions for the specific surface, we find for the cube:

For our cube, $D_{p}=\sqrt[3]{\frac{6}{\pi}} L=0.0248$

What this means is that a sphere with a diameter of $D_{p}=0.0248$ has the same volume as a cube with sides of length $L=0.02 \mathrm{~m}$.

The ratio of surface area to volume is then:

$$
\mathrm{a}=\mathrm{a}_{\mathrm{v}}(1-\varepsilon)=\frac{6}{\mathrm{~L}}(1-\varepsilon)=300(1-0.3467)=196.0 \frac{1}{\mathrm{~m}_{(2 \mathrm{pts})}}
$$

(b)
cylinders: $\mathrm{D}=0.02 \mathrm{~m}, \mathrm{H}=0.03 \mathrm{~m}$
The definition of the specific surface is the surface area over volume, which for a cylinder is;
$a_{v}=\frac{S_{p}}{v_{p}}=\frac{H \pi D+2 \frac{\pi}{4} D^{2}}{H \frac{\pi}{4} D^{2}}=\frac{4 H D+2 D^{2}}{H D^{2}}$
$a_{v}=\frac{4 H D+2 D^{2}}{H D^{2}}=266.67 \frac{1}{\mathrm{~m}}$

However Geankoplis does not give the sphericity for an arbitrary cylinder. One can obtain this by
$\mathrm{V}_{\mathrm{sph}}=\mathrm{V}_{\mathrm{cyl}}$
$\frac{4}{3} \pi\left(\frac{D_{p}}{2}\right)^{3}=\mathrm{H} \pi\left(\frac{D}{2}\right)^{2}$
Thus, the effective particle diameter of the cylinder is
$D_{p}=\sqrt[3]{\frac{3}{2} H D^{2}}$
The sphericity is the ratio of the surface area of the sphere to the surface area of the particle:

$$
\phi_{\mathrm{s}}=\frac{\pi \mathrm{D}_{\mathrm{p}}{ }^{2}}{\mathrm{~S}_{\mathrm{p}}}=\frac{\pi \mathrm{D}_{\mathrm{p}}{ }^{2}}{H \pi \mathrm{D}+2 \frac{\pi}{4} \mathrm{D}^{2}}=\frac{\pi\left(\sqrt[3]{\frac{3}{2} \mathrm{HD}^{2}}\right)^{2}}{H \pi \mathrm{D}+2 \frac{\pi}{4} \mathrm{D}^{2}}=\frac{4\left(\sqrt[3]{\frac{3}{2} \mathrm{HD}^{2}}\right)^{2}}{4 H D+2 \mathrm{D}^{2}}
$$

Now express H as a fraction of $\mathrm{D}, \mathrm{H}=\mathrm{kD}$

$$
\phi_{\mathrm{s}}=\frac{4\left(\sqrt[3]{\frac{3}{2} k D^{3}}\right)^{2}}{4 k D^{2}+2 \mathrm{D}^{2}}=\frac{2}{2 \mathrm{k}+1}\left(\frac{3}{2} k\right)^{2 / 3}
$$

When $\mathrm{H}=\mathrm{D}, \mathrm{k}=1$, and $\phi_{\mathrm{S}}=\left(\frac{3}{2}\right)^{-1 / 3}=0.874$ which is what Geankoplis gives.
For our values of the cylinder dimension:

$$
\begin{align*}
& \phi_{\mathrm{s}}=\frac{4\left(\sqrt[3]{\frac{3}{2} H D^{2}}\right)^{2}}{4 H D+2 \mathrm{D}^{2}}=0.8585 \\
& D_{p}=\sqrt[3]{\frac{3}{2} H D^{2}}=0.0262 \tag{2pts}
\end{align*}
$$

What this means is that a sphere with a diameter of $D_{p}=0.026$ has the same volume as a cylinder with diameter $D=0.02 \mathrm{~m}$ and height $\mathrm{H}=0.03 \mathrm{~m}$

The ratio of surface area to volume is then:

$$
\begin{equation*}
a=a_{v}(1-\varepsilon)=266.67(1-0.3467)=174.2 \frac{1}{m} \tag{2pts}
\end{equation*}
$$

Problem 4. Geankoplis, problem 3.2-2, page 206
The fluid is air at $37.8 \mathrm{C}=311 \mathrm{~K}, \mathrm{D}=0.8 \mathrm{~m}, \mathrm{R}=0.124 \mathrm{~m}$ of water, static pressure is 0.275 m of water gage. The coefficient is 0.97

Calculate the density of air and the static pressure of the stack

$$
\begin{aligned}
& \rho_{\text {air }}=\frac{p_{\text {static }} \cdot M W}{R T} \\
& \rho_{\text {static }}=p_{\text {atm }}+g h\left(\rho_{\text {water }}-\rho_{\text {air }}\right)
\end{aligned}
$$

We have two equations and two unknowns, the density of air and the static pressure. Substitute and solve.

$$
\begin{align*}
& p_{\text {static }}=p_{\text {atm }}+g h\left(\rho_{\text {water }}-\frac{p_{\text {static }} \cdot M W}{R T}\right) \\
& p_{\text {static }}=\frac{p_{\text {atm }}+g h \rho_{\text {water }}}{\left(1+\frac{g h M W}{R T}\right)}=104017 \mathrm{~Pa} \\
& \rho_{\text {air }}=\frac{p_{\text {static }} \cdot M W}{R T}=1.167 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& v_{\max }=C_{p} \sqrt{\frac{2\left(p_{2}-p_{1}\right)}{\rho}}=0.97 \sqrt{\frac{2(9.8 \cdot 0.0124 \cdot(1000-1.167))}{1.167}} \\
& v_{\max }=14.0 \frac{\mathrm{~m}}{\mathrm{~s}} \tag{2pts}\\
& N_{R e}=\frac{D \bar{v} \rho}{\mu}=690,000 \frac{\text { so fls })}{} \\
& \bar{v}=0.86 v_{\text {max }}=12.04 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& q=\bar{v} A=6.1 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
\end{align*}
$$

Problem 5. Geankoplis, problem 3.2-5, page 207
The fluid is water at $20 \mathrm{C}=293 \mathrm{~K}, \mathrm{D}=0.0525 \mathrm{~m}, \mathrm{D} 2=0.020 \mathrm{~m}, \mathrm{R}=0.214 \mathrm{~m}$ of Hg . The coefficient is 0.98

$$
\begin{align*}
& v_{2}=\frac{C_{v}}{\sqrt{1-\left(D_{2} / D_{1}\right)^{4}}} \sqrt{\frac{2\left(p_{2}-p_{1}\right)}{\rho}} \\
& =\frac{0.98}{\sqrt{1-(0.02 / 0.0525)^{4}}} \sqrt{\frac{2(9.8 \cdot 0.214 \cdot(13596-1000))}{1000}} \tag{2pts}\\
& =0.99 \cdot 7.27=7.20 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& q=\bar{v} A=2.3 \cdot 10^{-3} \frac{\mathrm{~m}^{3}}{\mathrm{~s}} \tag{2pts}\\
& \text { or } \\
& \dot{\mathrm{m}}=\rho q=2.3 \frac{\mathrm{~kg}}{\mathrm{~s}}
\end{align*}
$$

Problem 6. Geankoplis, problem 3.2-6, page 207

The fluid is oil at $20 \mathrm{C}=293 \mathrm{~K}$, density $=900 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$, viscosity $=6 \mathrm{cp}=0.006 \mathrm{~kg} / \mathrm{m} / \mathrm{s}$, $\mathrm{D}=0.1023 \mathrm{~m}, \mathrm{q}=0.0174 \mathrm{~m}$ ^3/s, $\mathrm{R}=0.93 \times 10^{\wedge} 5 \mathrm{~Pa}$. The coefficient is 0.61

$$
\begin{aligned}
& v_{0}=\frac{q}{A}=\frac{4 q}{\pi D_{0}^{2}} \\
& v_{0}=\frac{C_{0}}{\sqrt{1-\left(D_{0} / D_{1}\right)^{4}}} \sqrt{\frac{2\left(p_{1}-p_{2}\right)}{\rho}}=\frac{4 q}{\pi D_{0}^{2}} \\
& \frac{C_{0}^{2}}{1-\left(D_{0} / D_{1}\right)^{4}} \frac{2\left(p_{1}-p_{2}\right)}{\rho}=\left(\frac{4 q}{\pi D_{0}^{2}}\right)^{2} \\
& \left(\frac{\pi C_{0}}{4 q}\right)^{2} \frac{2\left(p_{1}-p_{2}\right)}{\rho}=\left(\frac{1}{D_{0}^{2}}\right)^{2}\left[1-\left(D_{0} / D_{1}\right)^{4}\right] \\
& \left(\frac{\pi C_{0}}{4 q}\right)^{2} \frac{2\left(p_{1}-p_{2}\right)}{\rho}=\frac{1}{D_{0}^{4}}-\frac{1}{D_{1}^{4}}
\end{aligned}
$$

$$
\begin{align*}
& D_{0}=\sqrt[4]{\frac{1}{\left(\frac{\pi C_{0}}{4 q}\right)^{2}} \frac{2\left(p_{1}-p_{2}\right)}{\rho}+\frac{1}{D_{1}^{4}}}=0.0496 \mathrm{~m} \tag{2pts}\\
& v_{0}=\frac{q}{A}=\frac{4 q}{\pi D_{0}^{2}}=7.21 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& v_{1}=v_{2}=\frac{q}{A}=\frac{4 q}{\pi D_{0}^{2}}=2.12 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& N_{R e, 0}=\frac{D_{0} v_{0} \rho}{\mu}=53,600 \\
& N_{R e, 1}=N_{R e, 2}=\frac{D_{1} v_{1} \rho}{\mu}=23,500 \\
& \text { permanent pressure loss: } \\
& \frac{D_{0}}{D_{1}}=0.48
\end{align*}
$$

So, from Geankoplis, page 132,
$\Delta p_{\text {perm }}=0.73\left(p_{2}-p_{1}\right)=67890 \mathrm{~Pa}$

