

Molecular-Level Description of Reaction Equilibrium

CBE 450: Reactor Engineering Fundamentals

Fall, 2009 Prof. David Keffer dkeffer@utk.edu

Quantum Mechanics can be combined with Statistical Mechanics to provide thermodynamic properties like internal energy, enthalpy, entropy and free energy.

One requires a statistical mechanical model that provides a theoretical framework for expressing thermodynamic properties such as the entropy in terms of molecular level properties, such as the molecular symmetry number, the moment of inertia, the spectrum of normal frequencies, activation barriers to rotation, etc. One must understand that this mapping from QM to SM is in essence a coarse-graining procedure that reduces the number of degrees of freedom in the system. Like any other coarse-graining procedure, the mapping is approximate.

In large part, the most difficult thermodynamic property to determine experimentally or via computation is the entropy. For a polyatomic ideal gas in its ground electronic and nuclear states, the statistical mechanical model splits the entropy into four terms.

$$S_{total} = S_{translational} + S_{rotational} + S_{vibrational} + S_{internal rotational}$$

The complete set of inputs for a statistical mechanical model used in the determination of these thermodynamic properties is given below. The properties in red come from QM calculations.

- molecular weight (for translation)
- molecular moments of inertia (for rotation)
- symmetry number of molecule (for rotation)
- number of vibrational modes (for vibration)
- spectra of normal frequencies (for vibration)
- number of internal rotors (for internal rotation)
- rotor moments of inertia (for internal rotation)
- rotor activation energies (for internal rotation)
- enthalpy of formation (for energy reference)
- molecular formula (for energy reference)
- reference temperature (for energy reference)

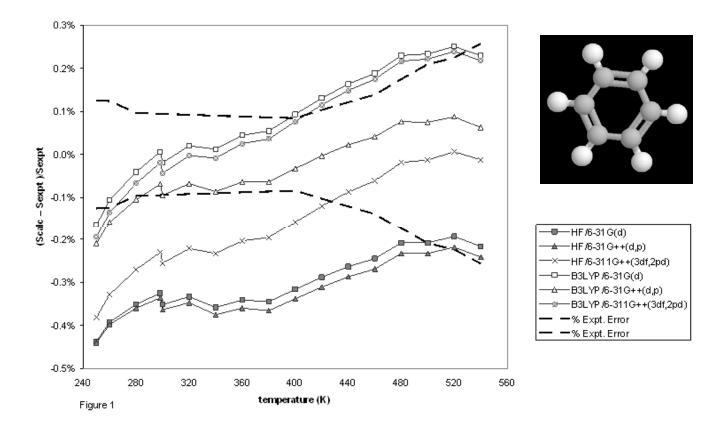
Here we show a comparison between experimental and calculated vibrational frequencies of benzene as a function of both method and basis set for benzene.

	HF														
Benzene	6-31G(d)		6-31++G(d,p)		6-311++G(3df,2pd)		6-31G(d)		6-31++G(d,p)				Symmetry		
Experimental Freq.		Corrected						1 Corrected						Symbol	
3062	3390	3064	3374	3062	3347	3063	3212	3108	3208	3135	3194	3123	Arc	2	
3053	3378	3053	3363	3052	3336	3053	3201	3098	3198	3126	3184	3113	Enu	20Ь	
3053	3378	3053	3363	3052	3336	3053	3201	3098	3198	3126	3184	3113	Enu	20a	
3048	3360	3036	3345	3036	3317	3036	3185	3083	3182	3110	3168	3098	23	7Ь	
3048	3360	3036	3345	3036	3317	3036	3185	3083	3182	3110	3168	3098	23	7a	
3048	3349	3026	3334	3025	3300	3020	3175	3073	3172	3101	3154	3084	Bhu	13	
1599	1797	1625	1782	1617	1768	1618	1656	1603	1642	1605	1632	1596	E ₂₀	8b	
1599	1797	1625	1782	1617	1768	1618	1656	1603	1642	1604	1632	1596	E2G	8a	
1482	1652	1493	1637	1486	1632	1493	1531	1482	1515	1481	1516	1482	Enu	19b	
1482	1652	1493	1637	1486	1632	1493	1531	1482	1515	1481	1515	1482	Enu	19a	
1350	1508	1363	1498	1360	1495	1368	1387	1342	1378	1347	1386	1355	Aes	3	
1309	1352	1222	1351	1226	1336	1222	1357	1313	1353	1322	1333	1304	B ₂₀	14	
1178	1294	1170	1285	1166	1280	1172	1208	1169	1199	1172	1199	1173	E23	9Ь	
1178	1294	1170	1284	1166	1280	1172	1208	1169	1198	1171	1199	1173	23	9a	
1146	1197	1082	1195	1084	1170	1071	1186	1147	1177	1150	1176	1150	Bau	15	
1037	1142	1032	1133	1028	1127	1032	1069	1035	1061	1037	1060	1037	Enu	18b	
1037	1142	1032	1133	1028	1127	1032	1069	1035	1061	1037	1060	1037	Enu	18a	
1010	1097	991	1096	994	974	892	1020	987	1018	995	933	912	Bhu	12	
993	1084	980	1074	975	1070	979	1021	988	1013	990	1013	991	Arc	1	
990	1137	1027	1146	1040	1112	1018	1012	979	1010	987	996	974	B ₂₀	5	
967	1100	995	1107	1004	1093	1000	970	939	985	963	988	966	E2.1	17b	
967	1100	995	1107	1004	1093	1000	970	939	984	962	987	965	E2.1	17a	
346	962	869	958	870	953	872	866	838	865	845	868	848	Enci	10b	
846	962	869	958	870	953	872	866	838	863	843	865	846	Eng	10a	
707	777	702	785	713	744	680	718	695	710	694	688	673	B ₂₀	4	
373	765	691	759	688	757	692	696	673	689	673	690	675	Aau	11	
606	666	601	663	602	657	601	622	602	619	605	620	606	Eza	6b	
606	666	601	663	602	657	601	622	602	619	605	620	606	E 2G	6a	
398	453	410	452	410	447	409	416	402	412	403	411	402	Eau	16b	
398	453	410	452	410	447	409	416	402	411	402	411	401	E ₂₀	16a	

Benzene experimental, computed and corrected frequencies (cm⁻¹)

Kassaee, M.H., Keffer, D.J., Steele, W.V., J. Molecular Structure: THEOCHEM, 800(1-3) 2007 p. 23-34.

Quantum Mechanics Still Requires Experiment

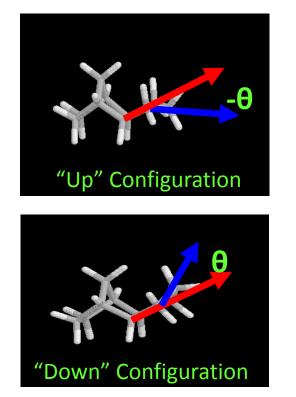


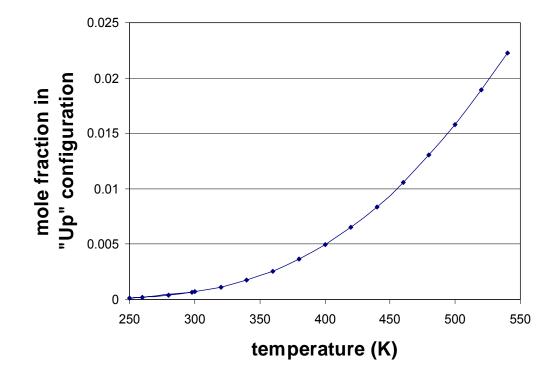
The state of the art of quantum mechanical calculations today is such that one requires an empirical scaling factor to correct vibrational frequencies computed from first principles. Tables of the frequencies have been generated as a function of basis set and method. They are averaged over many compounds.

		Methods with standard basis sets											
		STO-3G	3-21G	3-21G*	6-31G	6-31G*	6-31G**	6-31+G**	6-311G*	6-311G**	6-31G(2df,p)	cc-pVDZ	cc-pVTZ
hartree fock	HF	<u>0.8165</u>	<u>0.9056</u>	0.9026	0.9029	<u>0.8985</u>	<u>0.9026</u>	0.9042	<u>0.9044</u>	<u>0.9085</u>	<u>0.9055</u>	<u>0.9080</u>	<u>0.9101</u>
	ROHF	1.0000	0.9070	0.9085	0.8953	0.9025	<u>0.8546</u>	0.8559	0.8556	1.0000	1.0000	<u>0.8607</u>	<u>0.8562</u>
density functional	BLYP	<u>0.9252</u>	0.9945	0.9935	0.9924	<u>0.9919</u>	<u>0.9923</u>	<u>0.9947</u>	0.9975	<u>0.9961</u>	<u>0.9945</u>	<u>1.0016</u>	<u>0.9970</u>
	B3LYP	<u>0.8924</u>	<u>0.9649</u>	0.9620	0.9620	0.9603	<u>0.9608</u>	0.9642	0.9663	<u>0.9668</u>	<u>0.9650</u>	<u>0.9700</u>	<u>0.9651</u>
	B3LYPult rafine	1.0000	1.0000	1.0000	1.0000	<u>0.9580</u>	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	<u>1.0000</u>
	B3PW91	<u>0.8850</u>	0.9612	0.9594	0.9577	0.9567	<u>0.9584</u>	0.9601	0.9627	<u>0.9631</u>	<u>0.9614</u>	<u>0.9650</u>	<u>0.9616</u>
	mPW1PW91	<u>0.8789</u>	0.9546	0.9465	0.9447	<u>0.9483</u>	<u>0.9515</u>	0.9518	0.9544	0.9567	0.9547	<u>0.9583</u>	<u>0.9592</u>
	PBEPBE	0.9136	0.9909	0.9535	0.9862	<u>0.9857</u>	0.9863	0.9886	0.9896	<u>0.9909</u>	<u>0.9897</u>	0.9942	<u>0.9931</u>
Moller Plesset perturbation	MP2FC	<u>0.8719</u>	<u>0.9545</u>	<u>0.9513</u>	<u>0.9568</u>	<u>0.9430</u>	<u>0.9365</u>	<u>0.9406</u>	<u>0.9503</u>	<u>0.9502</u>	<u>0.9445</u>	<u>0.9525</u>	<u>0.9495</u>
	MP2FU	<u>1.0000</u>	<u>0.9548</u>	0.9480	<u>0.9501</u>	0.9422	<u>0.9344</u>	<u>0.9392</u>	<u>0.9471</u>	<u>0.9486</u>	<u>1.0000</u>	<u>0.9504</u>	<u>0.9361</u>
	PMP2	1.0000	1.0000	1.0000	1.0000	1.0000	<u>1.0000</u>	1.0000	1.0000	1.0000	<u>1.0000</u>	<u>1.0000</u>	<u>1.0000</u>
	MP4	<u>1.0000</u>	<u>0.9698</u>	0.9438	<u>0.9438</u>	<u>0.9548</u>	<u>0.9438</u>	<u>0.9438</u>	<u>0.9590</u>	<u>1.0000</u>	1.0000	<u>0.9438</u>	<u>0.9438</u>
Configuration interaction	CID	<u>1.0000</u>	<u>0.9316</u>	<u>0.9305</u>	<u>0.9352</u>	<u>0.9237</u>	<u>0.9240</u>	0.9240	0.9291	<u>1.0000</u>	<u>1.0000</u>	<u>0.9240</u>	<u>0.9265</u>
	CISD	<u>1.0000</u>	<u>0.9390</u>	0.9344	<u>0.9378</u>	<u>0.9258</u>	<u>0.9176</u>	<u>0.9218</u>	0.9253	<u>1.0000</u>	<u>1.0000</u>	<u>0.9218</u>	<u>0.9298</u>
Quadratic configuration interaction	QCISD	<u>1.0000</u>	<u>0.9692</u>	<u>0.9611</u>	<u>0.9636</u>	<u>0.9523</u>	<u>0.9414</u>	<u>0.9454</u>	<u>0.9574</u>	<u>0.9541</u>	<u>1.0000</u>	<u>0.9594</u>	<u>0.9537</u>
	QCISD(T)	<u>1.0000</u>	<u>0.9537</u>	<u>0.9537</u>	<u>0.9537</u>	<u>0.9593</u>	<u>0.9373</u>	<u>0.9390</u>	<u>0.9628</u>	<u>1.0000</u>	<u>1.0000</u>	<u>0.9531</u>	<u>0.9486</u>
Coupled Cluster	CCD	1.0000	0.9723	0.9565	<u>0.9595</u>	<u>0.9465</u>	0.9376	0.9423	0.9551	1.0000	1.0000	<u>0.9567</u>	<u>0.9337</u>
	CCSD	1.0000	0.9431	0.9431	0.9431	<u>0.9443</u>	0.9326	0.9338	0.9535	1.0000	1.0000	<u>0.9473</u>	<u>0.9412</u>
	CCSD(T)	<u>1.0000</u>	0.9431	0.9431	0.9431	<u>0.9621</u>	<u>0.9485</u>	<u>0.9596</u>	<u>0.9626</u>	<u>1.0000</u>	<u>1.0000</u>	<u>0.9788</u>	<u>0.9748</u>

Here we show a comparison between experimental and calculated entropies as a function of both method and basis set for benzene.

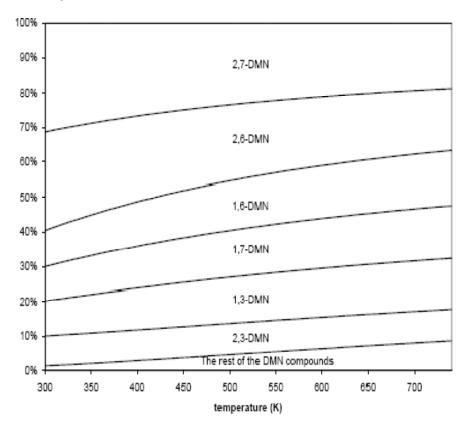
Source: Kassaee, M.H., Keffer, D.J., Steele, W.V., J. Molecular Structure: THEOCHEM, 800(1-3) 2007 p. 23-34. Fundamentals of Sustainable Technology **Equilibrium Distributions**




For the ratio of isomers in the ideal gas,

$$\frac{N_1}{N_2} = K_{eq,1-2} = \exp\left(-\frac{\Delta G_{1-2}}{RT}\right)$$
$$= \exp\left(-\frac{\Delta H_{1-2} - T\Delta S_{1-2}}{RT}\right)$$
$$= \exp\left(\frac{\Delta S_{1-2}}{R}\right) \exp\left(-\frac{\Delta H_{1-2}}{RT}\right)$$

This procedure has been used to compute the relative configuration of the "up" and "down" configurations of the jet fuel, JP-10, as a function of temperature. The Gibbs free energy is calculated at each temperature for each compound. Based on the free energy difference, the relative distribution of configurations is readily determined. In this case, the "down configuration is much more stable and is predominant at low temperatures.



Thermodynamic Properties: dimethylnapthalene

STAIR Sustainable Technology through Advanced Interdisciplinary Research

There are 10 dimethylnapthalene isomers. In order to compute the dimethylnapthalene equilibrium distribution, one requires free energies.



Figure 9 (a): Calculated equilibrium distribution of 2,3-DMN, 1,6-DMN, 1,3-DMN, 1,7-DMN, 2,7-DMN and 2,6-DMN and the sum distribution of the rest of the DMN compounds in the temperature range of 300-740 K with 20 K increments.

Kassaee, M.H., Keffer, D.J., Steele, W.V., *J. Chem. Eng. Data*, **52**(5) 2007 p. 1843-1850. Fundamentals of Sustainable Technology